Nothing
#' Optimal sample allocation identification for two-level multisite randomized
#' trials investigating main and moderation effects with individual-level
#' moderators
#'
#' @description The optimal design of two-level
#' multisite-randomized trials (MRTs) probing main and moderation effects
#' with individual-level mediators identify the optimal sample allocations.
#' The optimal design parameters include
#' the level-1 sample size per level-2 unit (\code{n})
#' and the proportion of level-1 individuals/units assigned to
#' the experimental group (\code{p}).
#' This function solves the optimal \code{n} and/or \code{p}
#' with and without a constraint.
#' @inheritParams od.2m
#' @param omega The treatment-by-site variance of the outcome.
#' @param power Statistical power specified for the main effect, default is .80.
#' @param power.dis Statistical power distance between main and moderation
#' effects. Default is 0. The power for moderation = power - power.dis.
#' @param gamma The standardized moderated treatment effect.
#' @param Q The proportion of units in one group for the binary moderator.
#' Default is 0.5.
#' @param random.slope Logical, the model is a random slope one if TURE. Default
#' is TRUE.
#' @param binary Logical; binary moderator if TURE and continuous moderator if
#' FALSE. Default is TRUE.
#' @export od.2m.111m
#' @return
#' Unconstrained or constrained optimal sample allocation (\code{n} and \code{p}).
#' The function also returns statistical power,
#' function name, design type,
#' and parameters used in the calculation.
#' @examples
#' myod <- od.2m.111m(icc = .2, r12 = .5, r22m = .5,
#' c1 = 10, c1t = 100, c2 = 50, omega = .01, gamma = 0.1)
#' myod$out
od.2m.111m <- function(n = NULL, p = NULL, icc = NULL,
r12 = NULL, r22m = NULL,
c1 = NULL, c2 = NULL,
c1t = NULL, omega = NULL,
m = NULL, plots = TRUE, plot.by = list(n = "n", p = "p"),
nlim = c(2, 50), plim = c(0.01, 0.99), varlim = NULL,
nlab = NULL, plab = NULL, varlab = NULL,
vartitle = NULL, verbose = TRUE, iter = 100,
tol = 1e-10, q = 1, d = 0.1, gamma = 0.1,
power = 0.8, random.slope = TRUE,
d.p = c(0.1, 0.5), d.n = c(2, 1000),
sig.level = 0.05, two.tailed = TRUE,
Jlim = c(4, 1e+10), binary = TRUE,
nrange = c(2, 10000), power.dis = 0,
Q = 0.5,
max.value = Inf, max.iter = 300, e = 1e-10,
n.of.ants = 10, n.of.archive = 50, q.aco = 0.0001,
xi = 0.5) {
funName <- "od.2m.111m"
designType <- "two-level MRTs with individaul-level moderators"
NumberCheck <- function(x) {!is.null(x) && !is.numeric(x)}
if (sum(sapply(list(icc, r12, r22m,
c1, c2, c1t, omega),
function(x) is.null(x))) >= 1)
stop("All of 'icc', 'r12', 'r22m',
'c1', 'c2', 'c1t', and 'omega' must be specified")
if (sum(sapply(list(icc), function(x) {
NumberCheck(x) || any(0 > x | x > 1)
})) >= 1)
stop("'icc' must be numeric in [0, 1]")
if (sum(sapply(list(r12, r22m), function(x) {
NumberCheck(x) || any(0 > x | x > 1)
})) >= 1)
stop("'r12' and 'r22m' must be numeric in [0, 1]")
if (sum(sapply(list(c1, c2, c1t), function(x) {
NumberCheck(x)})) >= 1)
stop("'c1', 'c2', and 'c1t' must be numeric")
if (!is.null(plot.by) && !is.list(plot.by))
stop("'plot.by' must be in list format (e.g., plot.by = list(n = 'n'))")
if (!is.numeric(iter) || iter < 2)
stop("'iter' must be numeric with iter >= 2")
par <- list(icc = icc,
r12 = r12, r22m = r22m,
c1 = c1, c2 = c2, c1t = c1t, omega = omega,
m = m,
n = n, p = p, iter = iter, gamma = gamma, binary = binary,
power = power, power.dis = power.dis, d = d, q = q,
sig.level = sig.level, two.tailed = two.tailed,
max.iter = max.iter,
n.of.ants = n.of.ants, n.of.archive = n.of.archive,
q.aco = q.aco,
xi = xi
)
tside <- ifelse(two.tailed == TRUE, 2, 1)
if (two.tailed) {#power for main
pwr.expr <- quote({
lambda <- d * sqrt((p * (1 - p) * n * J) /
(p * (1 - p) * n * omega * (1 - r22m) +
(1 - icc) * (1 - r12)));
1 - pt(qt(1 - sig.level / tside, df = J - q - 1),
df = J - q - 1, lambda) +
pt(qt(sig.level / tside, df = J - q - 1),
df = J - q - 1, lambda)
})
} else {
pwr.expr <- quote({
lambda <- d * sqrt((p * (1 - p) * n * J) /
(p * (1 - p) * n * omega * (1 - r22m) +
(1 - icc) * (1 - r12)));
1 - pt(qt(1 - sig.level / tside, J - q - 1),
df = J - q - 1, lambda)
})}
if(binary){
var.mod <- Q*(1-Q)
} else {
var.mod <- 1
}
if(random.slope){#power for moderation
if (two.tailed) {
pwr2.expr <- quote({
lambda <- gamma * sqrt((p * (1 - p) * n * J*var.mod) /
(p * (1 - p) * n * omega * var.mod +
(1 - icc) * (1 - r12)));
1 - pt(qt(1 - sig.level / tside, df = J - 1),
df = J - 1, lambda) +
pt(qt(sig.level / tside, df = J - 1),
df = J - 1, lambda)
})
} else {
pwr2.expr <- quote({
lambda <- gamma * sqrt((p * (1 - p) * n * J*var.mod) /
(p * (1 - p) * n * omega * var.mod +
(1 - icc) * (1 - r12)));
1 - pt(qt(1 - sig.level / tside, J - 1),
df = J - 1, lambda)
})}
} else {
if (two.tailed) {
pwr2.expr <- quote({
lambda <- gamma * sqrt((p * (1 - p) * n * J*var.mod) /
((1 - icc) * (1 - r12)));
1 - pt(qt(1 - sig.level / tside, df = J*(n-1) - 4),
df = J*(n-1) - 4, lambda) +
pt(qt(sig.level / tside, df = J*(n-1) - 4),
df = J*(n-1) - 4, lambda)
})
} else {
pwr2.expr <- quote({
lambda <- gamma * sqrt((p * (1 - p) * n * J*var.mod) /
((1 - icc) * (1 - r12)));
1 - pt(qt(1 - sig.level / tside, J*(n-1) - 4),
df = J*(n-1) - 4, lambda)
})}
}
if (is.null(par$p) & is.null(par$n)) {
n.of.opt.pars <- 2
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
# initiate parameters
eval <- 0
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(sqrt(n.of.archive), 0)
n.initial <- seq(from = d.n[1], to = d.n[2], length = n.of.initial)
p.initial <- seq(from = d.p[1], to = d.p[2], length = n.of.initial)
n.of.archive <- n.of.initial^2
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (n in n.initial){
for (p in p.initial){
X <- rbind(X, c(p, n))
p.X <- rbind(p.X, c(p, n))
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
y <- c(y, 1/m)
budget <- c(budget, m)
}
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ', n.of.archive,
' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
# the algorithm will stop if it converges
if (sum(apply(dist.mean, 2, stats::sd)) < e) {
m = 1/max.y; p = max.X[1]; n = max.X[2];
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- c("p", "n");
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank, n.of.ants,
nl, q.aco, n.of.archive, xi)
if (length(o.X) == 0) {
m = 1/max.y; p = max.X[1]; n = max.X[2];
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- c("p", "n");
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((0.001 < o.X[i, 1] & o.X[i, 1] < 0.999),
(nrange[1] < o.X[i, 2] && o.X[i, 2] < nrange[2])) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
p <- X[j, 1]
n <- X[j, 2]
if (verbose) {
if(n.iter==n.of.archive+1){
cat('The number of iterations is ', n.iter, sep = "")
}else if((n.iter>n.of.archive+1)&(n.iter < max.iter)){
if (n.iter %in% c(seq(100, max.iter, by=100), max.iter)){
cat(n.iter,
" ", sep = "")
}else{
cat(".", sep = "")
}
}
}
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
y <- c(y, 1/m)
budget <- c(budget, m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
m = 1/max.y; p = max.X[1]; n = max.X[2];
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- c("p", "n");
return(list(archive = pp, archive.design.pars = p.X,
archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
m = 1/max.y; p = max.X[1]; n = max.X[2];
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- c("p", "n");
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
}
} else if (!is.null(par$n) & is.null(par$p)){
n.of.opt.pars <- 1
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(n.of.archive, 0)
p.initial <- seq(from = d.p[1], to = d.p[2], length = n.of.initial)
n.of.archive <- n.of.initial
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (p in p.initial){
X <- rbind(X, p)
p.X <- rbind(p.X, p)
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
y <- c(y, 1/m)
budget <- c(budget, m)
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ', n.of.archive,
' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
# the algorithm will stop if it converges
if (sum(apply(dist.mean, 2, stats::sd)) < e) {
m = 1/max.y; p = max.X;
n = par$n; J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "p";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank,
n.of.ants, nl, q.aco, n.of.archive, xi)
if (length(o.X) == 0) {
m = 1/max.y; p = max.X;
n = par$n; J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "p";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((0.001 < o.X[i, 1] & o.X[i, 1] < 0.999)) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
p <- X[j, 1]
if (verbose) {
if(n.iter==n.of.archive+1){
cat('The number of iterations is ', n.iter, sep = "")
}else if((n.iter>n.of.archive+1)&(n.iter < max.iter)){
if (n.iter %in% c(seq(100, max.iter, by=100), max.iter)){
cat(n.iter,
" ", sep = "")
}else{
cat(".", sep = "")
}
}
}
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
y <- c(y, 1/m)
budget <- c(budget, m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
m = 1/max.y; p = max.X;
n = par$n; J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "p";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
m = 1/max.y; p = max.X;
n = par$n; J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "p";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
}
} else if (is.null(par$n) & !is.null(par$p)){
n.of.opt.pars <- 1
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(n.of.archive, 0)
n.initial <- seq(from = d.n[1], to = d.n[2], length = n.of.initial)
n.of.archive <- n.of.initial
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (n in n.initial){
X <- rbind(X, n)
p.X <- rbind(p.X, n)
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
y <- c(y, 1/m)
budget <- c(budget, m)
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ',
n.of.archive, ' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
if (sum(apply(dist.mean, 2, stats::sd)) < e) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = par$p,
n = max.X,
J = 1/max.y/((1 - p) * c1 * n + p * c1t * n + c2))))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank,
n.of.ants, nl, q.aco, n.of.archive, xi)
if (length(o.X) == 0) {
m = 1/max.y; p = par$p; n = max.X;
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "n";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((nrange[1] < o.X[i, 1] && o.X[i, 1] < nrange[2])) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
n <- X[j, 1]
if (verbose) {
if(n.iter==n.of.archive+1){
cat('The number of iterations is ', n.iter, sep = "")
}else if((n.iter>n.of.archive+1)&(n.iter < max.iter)){
if (n.iter %in% c(seq(100, max.iter, by=100), max.iter)){
cat(n.iter,
" ", sep = "")
}else{
cat(".", sep = "")
}
}
}
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
y <- c(y, 1/m)
budget <- c(budget, m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
m = 1/max.y; p = par$p; n = max.X;
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "n";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
m = 1/max.y; p = par$p; n = max.X;
J = m/((1 - p) * c1 * n + p * c1t * n + c2);
colnames(p.X) <- "n";
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = m, p = p, n = n,
J = J)))
}
}
} else if (!is.null(par$n) & !is.null(par$p)) {
cat("===============================\n",
"There is no optimization performed
because both p and n are contrained",
".\n===============================\n", sep = "")
J <- stats::uniroot(function(J)
eval(pwr.expr) - power, Jlim)$root
m <- J *((1 - p) * c1 * n + p * c1t * n + c2)
J.m <- stats::uniroot(function(J)
eval(pwr2.expr) - (power-power.dis), Jlim)$root
m.m <- J.m *((1 - p) * c1 * n + p * c1t * n + c2)
m <- max(m, m.m)
J <- max(J, J.m)
return(list(par = par, funName = funName,
designType = designType,
out = list(m = m,
p = par$p,
n = par$n, J = J)))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.