Nothing
welch.test <- function(formula, data, rate = 0, alpha = 0.05, na.rm = TRUE, verbose = TRUE) {
data <- model.frame(formula, data)
dp <- as.character(formula)
DNAME <- paste(dp[[2L]], "and", dp[[3L]])
if (rate==0){METHOD <- "Welch's Heteroscedastic F Test"
}else{METHOD <- "Welch's Heteroscedastic F Test with Trimmed Means and Winsorized Variances"}
if (na.rm){
completeObs <- complete.cases(data)
data <- data[completeObs,]
}
if (any(colnames(data)==dp[[3L]])==FALSE) stop("The name of group variable does not match the variable names in the data. The group variable must be one factor.")
if (any(colnames(data)==dp[[2L]])==FALSE) stop("The name of response variable does not match the variable names in the data.")
y=data[[dp[[2L]]]]
group=as.factor(data[[dp[[3L]]]])
if (!(is.factor(group)|is.character(group))) stop("The group variable must be a factor or a character.")
if (is.character(group)) group <- as.factor(group)
if (!is.numeric(y)) stop("The response must be a numeric variable.")
trim=function(x){
n=length(x)
xx=sort(x)
lambda=round(n*rate)
xx[(lambda+1):(n-lambda)]
}
wins=function(x){
n=length(x)
xx=sort(x)
lambda=round(n*rate)
xxx=c(rep(xx[lambda+1],lambda),xx[(lambda+1):(n-lambda)],rep(xx[n-lambda],lambda))
xxx
}
n <- length(y)
x.levels <- levels(factor(group))
y.n <- tapply(y, group, length)
lambda=round(y.n*rate)
b=y.n-2*lambda
y.vars <- sapply(tapply(y, group, wins), var)
y.means <- sapply(tapply(y, group, trim), mean)
q=(y.n-1)*y.vars/b/(b-1)
w <- 1/q
U=sum(w)
w_y=sum(w*y.means)/U
J=length(x.levels)
A=sum(w*(y.means-w_y)^2)/(J-1)
B=2*(J-2)/(J^2-1)*sum((1-w/U)^2/(b-1))
Ftest=A/(B+1)
df1=J-1
df2=(3/(J^2-1)*sum((1-w/U)^2/(b-1)))^(-1)
p.value=pf(Ftest,df1,df2,lower.tail = F)
if (verbose) {
cat("\n", "",METHOD, paste("(alpha = ",alpha,")",sep = ""), "\n",
sep = " ")
cat(if (rate!=0){"----------------------------------------------------------------------------------------------"}else{"-------------------------------------------------------------"},
"\n", sep = " ")
cat(" data :", DNAME, "\n\n", sep = " ")
cat(" statistic :", Ftest, "\n", sep = " ")
cat(" num df :", df1, "\n", sep = " ")
cat(" denom df :", df2, "\n", sep = " ")
cat(" p.value :", p.value, "\n\n", sep = " ")
cat(if (p.value > alpha) {
" Result : Difference is not statistically significant."
}
else {
" Result : Difference is statistically significant."
}, "\n")
cat(if (rate!=0){"----------------------------------------------------------------------------------------------"}else{"-------------------------------------------------------------"},
"\n", sep = " ")
}
result <- list()
result$statistic <- Ftest
result$parameter <- c(df1,df2)
result$p.value <- p.value
result$alpha <- alpha
result$method <- METHOD
result$rate <- rate
result$data <- data
result$formula <- formula
attr(result, "class") <- "owt"
invisible(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.