Nothing
#Subsection 2.2: Function for search of MV-optimal or near-optimal row-column designs
#SubSubsection 2.2.1 (Function for construction of MV-optimal row-column designs using treatment exchange algorithm)
MVoptrcd.maeT<-function(trt.N,col.N,theta,nrep,itr.cvrgval) {
ii=2
trco=cbind(matrix(1,trt.N-1),-diag(1,trt.N-1,trt.N-1))
while(ii<=trt.N-1){
if (ii==trt.N-1){
trco1=cbind(matrix(0,1,trt.N-2),matrix(1,trt.N-ii),-diag(1,trt.N-ii,trt.N-ii))}
else
{trco1=cbind(matrix(0,trt.N-ii,trt.N-(trt.N-ii+1)),matrix(1,trt.N-ii),-diag(1,trt.N-ii,trt.N-ii))}
trco=rbind(trco,trco1)
ii=ii+1
}
del.1<-matrix(10^20,trt.N,3)
desbest.1<-matrix(0,nrep*2,col.N)
MVoptbest.1<-matrix(0,nrep,2)
for(irep in 1:nrep){
des<-intcrcd.mae(trt.N, col.N)
if(trt.N==col.N&trt.N>3&irep<(trt.N-1)) {in.desns=matrix(0,(trt.N-3)*2,col.N)
in.desns0=rbind(seq(1,trt.N),c(seq(1,trt.N)[2:trt.N],1))
for(i in 1:(trt.N-3)) {in.desns01=cbind(rbind(seq(1,(trt.N-i)),c(seq(1,(trt.N-i))[2:(trt.N-i)],1)), rbind(rep(1,i),((trt.N-i+1):trt.N))); in.desns[c((i-1)*2+1,i*2),]=in.desns01}
in.desns=rbind(rbind(seq(1,trt.N),c(seq(1,trt.N)[2:trt.N],1)),in.desns)
des=in.desns[c((irep-1)*2+1,irep*2),]}
cmat<-cmatrcd.mae(trt.N,col.N,theta,des)
invc=ginv(cmat)
invcp=trco%*%invc%*%t(trco);
MVopt =max(diag(invcp));
MVcold=MVopt
descold=t(des)
cdel=100
while( abs(cdel)>=0.000000001){
ivalMVcold={}
for (i in 1:col.N){
m=1;
for (m in 1:2){
j=1;
for (j in 1:trt.N){
temp=descold[i,]
if(m==1) {
if(j==descold[i,1]|j==descold[i,2]) {MVopt=MVcold; del.1[j,]<-c(descold[i,1],(MVcold-MVopt),MVopt); next} else { descold[i,]=c(j,descold[i,2])}}
if(m==2) {
if(descold[i,2]==j|j==descold[i,1]) {MVopt=MVcold; del.1[j,]<-c(descold[i,2],(MVcold-MVopt),MVopt); next} else { descold[i,]=c(descold[i,1],j)}}
trtin<-contrasts(as.factor(t(descold)),contrasts=FALSE)[as.factor(t(descold)),]
R.trt<-t(trtin)%*%trtin
if (rankMatrix(R.trt)[1]<trt.N) {MVopt=MVcold; descold[i,]=temp; if(m==1) {del.1[j,]<-c(descold[i,1],(MVcold-MVopt),MVopt)} else {
del.1[j,]<-c(descold[i,2],(MVcold-MVopt),MVopt)}; next}
cmato=cmatrcd.mae(trt.N,col.N, 0,t(descold))
egv<-sort(eigen(cmato)$values)
if(egv[2]<0.000001) {MVopt=MVcold; descold[i,]=temp; if(m==1) {del.1[j,]<-c(descold[i,1],(MVcold-MVopt),MVopt)} else {
del.1[j,]<-c(descold[i,2],(MVcold-MVopt),MVopt)}; next}
cmat=cmatrcd.mae(trt.N,col.N,theta,t(descold))
invc=ginv(cmat)
invcp=trco%*%invc%*%t(trco);
MVopt =max(diag(invcp));
del.n<-del.1[j,]<-c(j,(MVcold-MVopt),MVopt)
descold[i,]=temp
}
del.1<-del.1[order(del.1[,3]),]
delbest=t(del.1[1,])
if (m==1) {
if (delbest[1]==descold[i,2]) { descold[i,]= descold[i,]} else { descold[i,]=c(delbest[1],descold[i,2]); cdel=delbest[2]; MVcold=delbest[3] }} else {
if (descold[i,1]==delbest[1]) {descold[i,]= descold[i,]} else { descold[i,]=c(descold[i,1],delbest[1]); cdel=delbest[2]; MVcold=delbest[3] }}
}
ivalMVcold=rbind(ivalMVcold, c(i,MVcold))
if(i>itr.cvrgval) if(all(ivalMVcold[c(i-(itr.cvrgval-2),i),2]==ivalMVcold[i-(itr.cvrgval-1),2])) break
}
#print(c(000,irep,MVcold,cdel,000))
}
#MVopt0=MVcold
cdel<-1000
while( abs(cdel)>=0.000000001){
MVopt=MVcold
#desg<-graph(t(descold))
#plot(desg)
del.2<-matrix(10^20,col.N+1,3)
del.2[col.N+1,]<-c(col.N+1,0,MVcold)
for(i in 1:col.N){
temp=descold[i,]
descold[i,]=rev(descold[i,])
cmato=cmatrcd.mae(trt.N,col.N, 0,t(descold))
egv<-sort(eigen(cmato)$values)
if(egv[2]<0.000001) {MVopt2=10^20; del.2[i,]<-c(i,(MVcold-MVopt2),MVopt2); next}
cmat=cmatrcd.mae(trt.N,col.N,theta,t(descold))
MVopt2=sum(diag(ginv(cmat)))
del.2[i,]<-c(i,(MVcold-MVopt2),MVopt2)
descold[i,]=temp
}
del.2<-del.2[order(del.2[,3]),]
delbest=t(del.2[1,])
if(delbest[1]<=col.N) {descold[delbest[1],]=rev(descold[delbest[1],]); cdel=delbest[2]; MVcold=delbest[3]} else {cdel=0}
#print(delbest[1]<=col.N)
#desg<-graph(t(descold))
#plot(desg,main=paste(MVopt-MVcold,sep=" / "))
#print(del.2)
#print(cdel)
#cat("\n", MVopt-MVcold,"\n")
#cdel<-MVopt-MVcold
#print(cdel)
#print(c(111,irep,MVcold,MVopt0-MVcold,cdel,111))
}
#desg<-graph(t(descold))
#plot(desg,main=paste(MVopt-MVcold,sep=" / "))
#print(del.2)
#print(cdel)
#cat("\n", MVopt-MVcold,"\n")
#"============================================================="
if (irep==1) {desbest.1=t(descold)} else {desbest.1=rbind(desbest.1,t(descold))}
MVoptbest.1[irep,]=c(irep,MVcold)
}
best=MVoptbest.1[order(MVoptbest.1[,2]),]
nb=best[1,1]
MVscore<-best[1,2]
MVoptde<- desbest.1[c((nb-1)*2+1,nb*2),]
tkmessageBox(title="Search completed",message=paste("Search completed",sep=""))
cnames=paste0("Ary",1:col.N)
dimnames(MVoptde)=list(c("Dye 1:", "Dye 2:"),cnames)
MVopt_sum2<-list("v"=trt.N,"b"=col.N,theta=theta,nrep=nrep,itr.cvrgval=itr.cvrgval, "OptdesF"=MVoptde,"Optcrtsv" =MVscore)
return(MVopt_sum2)
}#End of SubSubsection 2.2.1 (MVoptrcd.maeT function) construction of MV-optimal row-column design using treatment exchange algorithm
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.