View source: R/monic.polynomial.recurrences.R
monic.polynomial.recurrences | R Documentation |
This function returns a data frame with parameters required to construct monic orthogonal polynomials based on the standard recurrence relation for the non-monic polynomials. The recurrence relation for monic orthogonal polynomials is as follows.
q_{k + 1} ≤ft( x \right) = ≤ft( {x - a_k } \right)\;q_k ≤ft( x \right) - b_k \;q_{k - 1} ≤ft( x \right)
We require that q_{-1} ≤ft( x \right) = 0 and q_0 ≤ft( x \right) = 1. The recurrence for non-monic orthogonal polynomials is given by
c_k \;p_{k + 1} ≤ft( x \right) = ≤ft( {d_k + e_k \;x} \right)\;p_k ≤ft( x \right) - f_k \;p_{k - 1} ≤ft( x \right)
We require that p_{-1} ≤ft( x \right) = 0 and p_0 ≤ft( x \right) = 1. The monic polynomial recurrence parameters, a and b, are related to the non-monic polynomial parameter vectors c, d, e and f in the following manner.
a_k = - \frac{{d_k }}{{e_k }}
b_k = \frac{{c_{k - 1} \;f_k }}{{e_{k - 1} \;e_k }}
with b_0 = 0.
monic.polynomial.recurrences(recurrences)
recurrences |
the data frame of recurrence parameter vectors c, d, e and f |
A data frame with n + 1 rows and two named columns, a and b.
Frederick Novomestky fnovomes@poly.edu
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
orthogonal.polynomials
,
### ### construct a list of the recurrences for the T Chebyshev polynomials of ### orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### construct the monic polynomial recurrences from the above list ### m.r <- monic.polynomial.recurrences( r )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.