View source: R/orthogonal.polynomials.R
orthogonal.polynomials | R Documentation |
Create list of orthogonal polynomials from the following recurrence relations for k = 0,\;1,\; … ,\;n.
c_k p_{k+1}≤ft( x \right) = ≤ft( d_k + e_k x \right) p_k ≤ft( x \right) - f_k p_{k-1} ≤ft( x \right)
We require that p_{-1} ≤ft( x \right) = 0 and p_0 ≤ft( x \right) = 1. The coefficients are the column vectors {\bf{c}}, {\bf{d}}, {\bf{e}} and {\bf{f}}.
orthogonal.polynomials(recurrences)
recurrences |
a data frame containing the parameters of the orthogonal polynomial recurrence relations |
The argument is a data frame with n + 1 rows and four named columns.
The column names are c
, d
, e
and f
.
These columns correspond to the column vectors described above.
A list of n + 1 polynomial objects
1 |
Order 0 orthogonal polynomial |
2 |
Order 1 orthogonal polynomial |
...
n+1 |
Order n orthogonal polynomial |
Frederick Novomestky fnovomes@poly.edu
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for T Chebyshev polynomials of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=FALSE ) print( r ) ### ### generate the list of orthogonal polynomials ### p.list <- orthogonal.polynomials( r ) print( p.list )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.