Description Usage Arguments Details Value Author(s) Examples
View source: R/estimate_risk_out_all.R
Estimates the expected risk associated to a given experiment for all possible observations to be performed.
| 1 | estimate_risk_out_all(thetas, knobj, experiment_fun)
 | 
| thetas | A sample from the posterior associated to the knoweldge list  | 
| knobj | A knowledge list. See  | 
| experiment_fun | A function that represents the molecular perturbation to be performed. See  | 
This implements the risk estimation procedure described in the paper. We use importance weighting to perform computation based on a single posterior sample. The global variable observables should be defined.
A dataframe with the following columns
| Measurement | Factor representing possible measurements. See  | 
| Risk | The risk associated to this measurement. | 
| Cost | The cost associated to this measurement. | 
Edouard Pauwels
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | data(experiment_list1)
data(observables)
data(knobjs)
sapply(	
	1:length(knobjs),
	function(k){
		assign(names(knobjs)[k], 
			knobjs[[k]], envir = .GlobalEnv)
	}
)
knobjActMult1$global_parameters$n_simu_weights <- 3
estimate_risk_out_all(knobjActMult1$datas[[1]]$thetas[1:10,], 
	knobjActMult1, experiment_list1$nothing)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.