Description Usage Arguments Details Value Author(s) Examples
View source: R/log_likelihood.R
Noise is assumed to be independent for each entry. The default likelihood assumes the same heteroscedastic noise as the model used in add_noise.
| 1 | log_likelihood(simu, simu_subset, data, fit = F)
 | 
| simu | Simulated time courses. | 
| simu_subset | Subset of the simulated time course which relates to observed data. | 
| data | Observed data. | 
| fit | Should smoothness prior information about simulation added to the prior or not? | 
The noise model is gaussian with variance of the form (0.01 + 0.04 * m^2) where m is the mean.
A numerical value.
Edouard Pauwels
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data(experiment_list1)
data(observables)
## Generate the knowledge object with correct parameter value
knobj <- generate_our_knowledge(transform_params)
simu <- simulate_experiment(knobj$global_parameters$true_params_T, knobj, experiment_list1$nothing)
simu_subset <- simu[
 knobj$global_parameters$tspan %in% observables[["mrnaLow"]]$reso, 
 observables[["mrnaLow"]]$obs
]
data <- add_noise(simu_subset)
log_likelihood(simu, simu_subset, data) 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.