Description Usage Format Source References Examples
yearly observations of 31 countries from 1963 to 1986
number of observations : 744
number of time-series : 24
country : developing countries
package : panelivreg
JEL codes: O19, C51, F17
Chapter : 02, 06
1 |
A dataframe containing:
country name
year
nominal exports deflated by the unit value of exports per capita
nominal imports deflated by the unit value of exports per capita
official foreing reserves (in US dollars) divided by nominal imports (in US dollars)
real GNP per capita
trend real GNP per capita calculated by fitting linear trend yit*=y0iexp(gi t), where y0i is the initial value of real gnp per capita for country i and gi is the ith country's average growth rate over 1964-1986
real genp for USA per capita
unit value of imports (in US dollars), 1980 = 100
unit value of exports (in US dollars), 1980 = 100
domestic CPI, 1980 = 100
US producer's price index, 1980 = 100
exchange rate (price of US dollars in local currency), 1980 = 1
domestic consumption per capita,
domestic fixed gross investment per capita
domestic disposable income per capita
population
official foreing reserves (in US dollars)
domestic money supply per capita
trend dummy, 1964 = 1
log of us producer price index divided by domestic cpi
log of nominal imports divided by export prices
log of imports price divided by domestic cpi
log of exports price divided by domestic cpi
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
Kinal, T. and K. Lahiri (1993) “On the Estimation of Simultaneous-equations Error-components Models with An Application to a Model of Developing Country Foreign Trade”, Journal of Applied Economics, 8, 81-92, doi: 10.1002/jae.3950080107 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | #### Example 2-4
## ------------------------------------------------------------------------
library("plm")
data("ForeignTrade", package = "pder")
FT <- pdata.frame(ForeignTrade)
summary(FT$gnp)
ercomp(imports ~ gnp, FT)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x) coef(plm(imports ~ gnp, FT, model = x))["gnp"])
#### Example 6-2
## ------------------------------------------------------------------------
data("ForeignTrade", package = "pder")
w1 <- plm(imports~pmcpi + gnp + lag(imports) + lag(resimp) |
lag(consump) + lag(cpi) + lag(income) + lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + lag(reserves) +
lag(exports) + trend + pgnp + lag(px),
ForeignTrade, model = "within")
r1 <- update(w1, model = "random", random.method = "nerlove",
random.dfcor = c(1, 1), inst.method = "baltagi")
## ------------------------------------------------------------------------
phtest(r1, w1)
## ------------------------------------------------------------------------
r1b <- plm(imports ~ pmcpi + gnp + lag(imports) + lag(resimp) |
lag(consump) + lag(cpi) + lag(income) + lag(px) +
lag(reserves) + lag(exports) | lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + trend + pgnp,
ForeignTrade, model = "random", inst.method = "baltagi",
random.method = "nerlove", random.dfcor = c(1, 1))
phtest(w1, r1b)
## ------------------------------------------------------------------------
rbind(within = coef(w1), ec2sls = coef(r1b)[-1])
## ------------------------------------------------------------------------
elast <- sapply(list(w1, r1, r1b),
function(x) c(coef(x)["pmcpi"],
coef(x)["pmcpi"] / (1 - coef(x)["lag(imports)"])))
dimnames(elast) <- list(c("ST", "LT"), c("w1", "r1", "r1b"))
elast
## ------------------------------------------------------------------------
rbind(within = coef(summary(w1))[, 2],
ec2sls = coef(summary(r1b))[-1, 2])
#### Example 6-4
## ------------------------------------------------------------------------
eqimp <- imports ~ pmcpi + gnp + lag(imports) +
lag(resimp) | lag(consump) + lag(cpi) + lag(income) +
lag(px) + lag(reserves) + lag(exports) | lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + trend + pgnp
eqexp <- exports ~ pxpw + gnpw + lag(exports) |
lag(gnp) + pw + lag(consump) + pm + lag(px) + lag(cpi) |
lag(money) + gnpw + pgnp + pop + lag(invest) +
lag(income) + lag(reserves) + exrate
r12 <- plm(list(import.demand = eqimp,
export.demand = eqexp),
data = ForeignTrade, index = 31, model = "random",
inst.method = "baltagi", random.method = "nerlove",
random.dfcor = c(1, 1))
summary(r12)
## ------------------------------------------------------------------------
rbind(ec2sls = coef(summary(r1b))[-1, 2],
ec3sls = coef(summary(r12), "import.demand")[-1, 2])
|
Loading required package: Formula
total sum of squares: 4110.659
id time
0.98248044 0.00763845
var std.dev share
idiosyncratic 0.08634 0.29383 0.074
individual 1.07785 1.03820 0.926
theta: 0.9423
within.gnp random.gnp pooling.gnp between.gnp
0.90236420 0.76815599 0.06366400 0.04870833
Hausman Test
data: imports ~ pmcpi + gnp + lag(imports) + lag(resimp) | lag(consump) + ...
chisq = 10.629, df = 4, p-value = 0.03106
alternative hypothesis: one model is inconsistent
Hausman Test
data: imports ~ pmcpi + gnp + lag(imports) + lag(resimp) | lag(consump) + ...
chisq = 7.1486, df = 4, p-value = 0.1282
alternative hypothesis: one model is inconsistent
pmcpi gnp lag(imports) lag(resimp)
within -0.05873374 0.02890065 0.9512149 0.05215182
ec2sls -0.05419773 0.01361175 0.9482115 0.04195281
w1 r1 r1b
ST -0.05873374 -0.05519734 -0.05419773
LT -1.20392829 -1.19529901 -1.04651970
pmcpi gnp lag(imports) lag(resimp)
within 0.02915262 0.041235082 0.03066695 0.008257449
ec2sls 0.02180217 0.006998615 0.01288882 0.006708722
Oneway (individual) effect Random Effect Model
(Nerlove's transformation)
Call:
plm.list(formula = list(import.demand = eqimp, export.demand = eqexp),
data = ForeignTrade, model = "random", random.method = "nerlove",
inst.method = "baltagi", index = 31, ... = pairlist(random.dfcor = c(1,
1)))
Balanced Panel: n = 31, T = 24, N = 744
Effects:
Estimated standard deviations of the error
import.demand export.demand
id 0.061871 0.078159
idios 0.143934 0.120007
Estimated correlation matrix of the individual effects
import.demand export.demand
import.demand 1.000 .
export.demand 0.138 1
Estimated correlation matrix of the idiosyncratic effects
import.demand export.demand
import.demand 1.000000 .
export.demand 0.097493 1
- import.demand
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.3987408 0.1189935 3.3509 0.0008266 ***
pmcpi -0.0540741 0.0217007 -2.4918 0.0128231 *
gnp 0.0110320 0.0053078 2.0784 0.0378497 *
lag(imports) 0.9504604 0.0118726 80.0549 < 2.2e-16 ***
lag(resimp) 0.0394789 0.0063424 6.2246 6.347e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
- export.demand
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.143674 0.139492 1.0300 0.303195
pxpw -0.061469 0.019467 -3.1576 0.001624 **
gnpw 0.114402 0.053359 2.1440 0.032201 *
lag(exports) 0.946533 0.013310 71.1143 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pmcpi gnp lag(imports) lag(resimp) (Intercept) pxpw
ec2sls 0.02180217 0.006998615 0.01288882 0.006708722 0.02180217 0.006998615
ec3sls 0.02170074 0.005307839 0.01187260 0.006342416 0.13949165 0.019466793
gnpw lag(exports)
ec2sls 0.01288882 0.006708722
ec3sls 0.05335866 0.013310021
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.