Description Usage Arguments Value See Also Examples
pgraph calculate the conditional dependency graph (with/without external factors) via projection using lasso or sparse additive model.
| 1 2 3 4 5 6 7 8 9 | 
| z | n * p dimensional matrix | 
| f | n * q factor matrix. Default = 'NULL'. | 
| method | projection method. Default = 'lasso'. | 
| cond | whether to create a conditional graph or unconditional graph. Default = TRUE. If cond = FALSE, f must be provided. | 
| R | number of random permutations for the test. | 
| randSeed | the random seed for the program. Default = 0. | 
| trace | whether to trace to estimation process. | 
a list to be used to calculate the ROC curve.
| statmat.pearson | matrix with pearson correlation test | 
| statmat.dcov | matrix with distance covariance test | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(splines)
set.seed(0)
p = 5;
n = 100;
tmp=runif(p-1,1,3)
s=c(0,cumsum(tmp));
s1=matrix(s,p,p)
cov.mat.true=exp(-abs(s1-t(s1)))
prec.mat.true=solve(cov.mat.true);
a=matrix(rnorm(p*n),n,p)
data.sa=a%*%chol(cov.mat.true);
true.graph = outer(1:p,1:p,f<-function(x,y){(abs(x-y)==1)})
methodlist = c('lasso','sam')
fit = vector(mode='list', length=2)
info = vector(mode='list', length=2)
auc = NULL
for(i in 1:2){
method = methodlist[i]
fit[[i]] = pgraph(data.sa, method = method)
info[[i]] = roc(fit[[i]]$statmat.pearson, true.graph)
auc[i] = sum(-diff(info[[i]][,1])*info[[i]][-1,2])
  cat(method, ': auc=', auc[i],'\n')
}
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.