plot.fitRMU: Plot the synthesis of RMU fit.

Description Usage Arguments Details Value Author(s) See Also Examples

Description

The function plot.fitRMU plots the results of fitRMU().

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
## S3 method for class 'fitRMU'
plot(
  x,
  ...,
  resultMCMC = NULL,
  chain = 1,
  replicate.CI = 10000,
  CI.RMU = NULL,
  what = "proportions",
  aggregate = "both",
  order = NULL,
  control.legend = list(),
  show.legend = TRUE
)

Arguments

x

A result file generated by fitRMU

...

Parameters used by plot

resultMCMC

MCMC result for fitRUM

chain

Chain to be plotted for MCMC

replicate.CI

Number of replicates to estimate CI

CI.RMU

A result of CI.RMU()

what

Can be proportions, numbers or total

aggregate

Can be model or both

order

Give the order of series in plot, from bottom to top. Can be used to not show series.

control.legend

Parameters send to legend

show.legend

If FALSE, does not show legend

Details

plot.fitRMU plots the results of a fit RMU.

Value

Return A list with result of CI.RMU()

Author(s)

Marc Girondot

See Also

Other Fill gaps in RMU: CI.RMU(), fitRMU_MHmcmc_p(), fitRMU_MHmcmc(), fitRMU(), logLik.fitRMU()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
## Not run: 
library("phenology")
RMU.names.AtlanticW <- data.frame(mean=c("Yalimapo.French.Guiana", 
                                         "Galibi.Suriname", 
                                         "Irakumpapy.French.Guiana"), 
                                 se=c("se_Yalimapo.French.Guiana", 
                                      "se_Galibi.Suriname", 
                                      "se_Irakumpapy.French.Guiana"), stringsAsFactors = FALSE)
data.AtlanticW <- data.frame(Year=c(1990:2000), 
      Yalimapo.French.Guiana=c(2076, 2765, 2890, 2678, NA, 
                               6542, 5678, 1243, NA, 1566, 1566),
      se_Yalimapo.French.Guiana=c(123.2, 27.7, 62.5, 126, NA, 
                                 230, 129, 167, NA, 145, 20),
      Galibi.Suriname=c(276, 275, 290, NA, 267, 
                       542, 678, NA, 243, 156, 123),
      se_Galibi.Suriname=c(22.3, 34.2, 23.2, NA, 23.2, 
                           4.3, 2.3, NA, 10.3, 10.1, 8.9),
      Irakumpapy.French.Guiana=c(1076, 1765, 1390, 1678, NA, 
                               3542, 2678, 243, NA, 566, 566),
      se_Irakumpapy.French.Guiana=c(23.2, 29.7, 22.5, 226, NA, 
                                 130, 29, 67, NA, 15, 20), stringsAsFactors = FALSE)
                           
cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
               colname.year="Year", model.trend="Constant", 
               model.SD="Zero")
expo <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
               colname.year="Year", model.trend="Exponential", 
               model.SD="Zero")
YS <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
             colname.year="Year", model.trend="Year-specific", 
             model.SD="Zero")
YS1 <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
             colname.year="Year", model.trend="Year-specific", 
             model.SD="Zero", model.rookeries="First-order")
YS1_cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
             colname.year="Year", model.trend="Year-specific", 
             model.SD="Constant", model.rookeries="First-order", 
             parameters=YS1$par)
YS2 <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
             colname.year="Year", model.trend="Year-specific",
             model.SD="Zero", model.rookeries="Second-order", 
             parameters=YS1$par)
YS2_cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW, 
             colname.year="Year", model.trend="Year-specific",
             model.SD="Constant", model.rookeries="Second-order", 
             parameters=YS1_cst$par)
               
compare_AIC(Constant=cst, Exponential=expo, 
YearSpecific=YS)

compare_AIC(YearSpecific_ProportionsFirstOrder_Zero=YS1,
YearSpecific_ProportionsFirstOrder_Constant=YS1_cst)

compare_AIC(YearSpecific_ProportionsConstant=YS,
           YearSpecific_ProportionsFirstOrder=YS1,
           YearSpecific_ProportionsSecondOrder=YS2)
           
compare_AIC(YearSpecific_ProportionsFirstOrder=YS1_cst,
           YearSpecific_ProportionsSecondOrder=YS2_cst)

barplot_errbar(YS1_cst$proportions[1, ], y.plus = YS1_cst$proportions.CI.0.95[1, ], 
y.minus = YS1_cst$proportions.CI.0.05[1, ], las=1, ylim=c(0, 0.7), 
main="Proportion of the different rookeries in the region")

plot(cst, main="Use of different beaches along the time", what="total")
plot(expo, main="Use of different beaches along the time", what="total")
plot(YS2_cst, main="Use of different beaches along the time", what="total")

plot(YS1, main="Use of different beaches along the time")
plot(YS1_cst, main="Use of different beaches along the time")
plot(YS1_cst, main="Use of different beaches along the time", what="numbers")

parpre <- par(mar=c(4, 4, 2, 5)+0.4)
par(xpd=TRUE)
plot(YS, main="Use of different beaches along the time", 
control.legend=list(x=2000, y=0.4, legend=c("Yalimapo", "Galibi", "Irakumpapy")))
par(mar=parpre)

# Example to modify order of series
plot(cst, order=c("Galibi.Suriname", "Irakumpapy.French.Guiana"))
plot(cst, order=c("Galibi.Suriname", "Irakumpapy.French.Guiana", "Yalimapo.French.Guiana"))

## End(Not run)

phenology documentation built on Oct. 23, 2020, 7:22 p.m.