alpha | Cronbach's alpha |
arizona | Arizona vegetation dataset |
cereals | Cereals datset |
check_args | Check arguments for 'plspm' and 'plspm.fit' |
check_blocks | Check well defined blocks |
check_boot | Check bootstrap options |
check_data | Check Data |
check_maxiter | Check maximum number of iterations |
check_model | Check congruence between inner and outer models |
check_modes | Check modes |
check_path | Check path matrix |
check_plscomp | Check vector of PLS components (for non-metric plspm) |
check_scaling | Check types of measurement scales and metric |
check_scheme | Check scheme |
check_specs | Check specifications of PLS-PM algorithm |
check_tol | Check tolerance threshold |
college | College datasets |
dummy.G | Dummy by Giorgio |
futbol | Futbol dataset from Spain-England-Italy |
get_alpha | Calculate Cronbach's alpha |
get_ave | Calculate AVE (Average Variance Extracted) |
get_boots | Performs bootstrap validation in 'plspm' |
get_boot_stats | Get data frame with bootstrap statistics |
get_data_scaled | Scaling data outside 'plspm' |
get_dummies | Dummy matrices for categorical manifest variables |
get_dummy | Non-Metric Dummy |
get_effects | Path coefficient effects for 'plspm' |
get_generals | Get general parameters |
get_gof | Goodness-of-fit for 'plspm' |
get_GQI | Group Quality Index |
get_inner_summary | Inner summary assessment |
get_locals_test | Local groups comparison test |
get_manifests | Building data matrix with manifest variables |
get_metric | Type of metric based on scaling measurement |
get_nom_scale | Non-Metric Nominal Scale |
get_numerics | Transform factors in MV into numeric |
get_num_scale | Non-Metric Numerical Scale |
get_ord_scale | Non-Metric Ordinal Scale |
get_paths | Calculate path coefficients for 'plspm' |
get_path_scheme | Calculate inner weighting path scheme |
get_PLSR | Internal PLS regression (full data) |
get_plsr1 | PLS regression for 'plspm' |
get_PLSRdoubleQ | get_PLSRdoubleQ |
get_PLSR_NA | Internal PLS regression with missing values |
get_rank | Rank of a non-metric variable |
get_rho | Calculate Dillon-Goldstein's rho |
get_scores | Calculate Latent Variable Scores |
get_treated_data | Apply corresponding treatment to MV |
get_unidim | Unidimensionality of reflective blocks |
get_weights | Outer Weights |
get_weights_nonmetric | Outer Weights Non-Metric Data |
innerplot | Plot inner model |
is_missing | Presence of missing values |
it.reb | Iterative steps of Response-Based Unit Segmentation (REBUS) |
local.models | PLS-PM for global and local models |
mobile | ECSI Mobile Phone Provider dataset |
normalize | Normalize a vector |
offense | Offense dataset |
orange | Orange Juice dataset |
outerplot | Plot outer model |
plot.plspm | Plots for PLS Path Models |
plspm | PLS-PM: Partial Least Squares Path Modeling |
plspm.fit | Basic results for Partial Least Squares Path Modeling |
plspm.groups | Two Groups Comparison in PLS-PM |
quantiplot | Quantification Plot |
rebus.pls | Response Based Unit Segmentation (REBUS) |
rebus.test | Permutation Test for REBUS Multi-Group Comparison |
rescale | Rescale Latent Variable Scores |
res.clus | Clustering on communality and structural residuals |
rho | Dillon-Goldstein's rho |
russa | Russett A |
russb | Russett B |
russett | Russett dataset |
satisfaction | Satisfaction dataset |
simdata | Simulated data for REBUS with two groups |
spainfoot | Spanish football dataset |
technology | Technology data set |
test_dataset | Test Data Set Availibility |
test_factors | Test presence of factors |
test_manifest_scaling | Test scaling of selected manifest variables |
test_null_weights | Test outer weights convergence within specified maxiter |
unidim | Unidimensionality of blocks |
wines | Wines dataset |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.