Nothing
#' Combine data.frames by row, filling in missing columns.
#'
#' \code{rbind}s a list of data frames filling missing columns with NA.
#'
#' This is an enhancement to \code{\link{rbind}} that adds in columns
#' that are not present in all inputs, accepts a list of data frames, and
#' operates substantially faster.
#'
#' Column names and types in the output will appear in the order in which
#' they were encountered.
#'
#' Unordered factor columns will have their levels unified and
#' character data bound with factors will be converted to
#' character. POSIXct data will be converted to be in the same time
#' zone. Array and matrix columns must have identical dimensions after
#' the row count. Aside from these there are no general checks that
#' each column is of consistent data type.
#'
#' @param ... input data frames to row bind together. The first argument can
#' be a list of data frames, in which case all other arguments are ignored.
#' Any NULL inputs are silently dropped. If all inputs are NULL, the output
#' is NULL.
#' @keywords manip
#' @family binding functions
#' @return a single data frame
#' @export rbind.fill
#' @usage rbind.fill(...)
#' @examples
#' rbind.fill(mtcars[c("mpg", "wt")], mtcars[c("wt", "cyl")])
rbind.fill <- function(...) {
dfs <- list(...)
if (length(dfs) == 0) return()
if (is.list(dfs[[1]]) && !is.data.frame(dfs[[1]])) {
dfs <- dfs[[1]]
}
dfs <- compact(dfs)
if (length(dfs) == 0) return()
if (length(dfs) == 1) return(dfs[[1]])
# Check that all inputs are data frames
is_df <- vapply(dfs, is.data.frame, logical(1))
if (any(!is_df)) {
stop("All inputs to rbind.fill must be data.frames", call. = FALSE)
}
# Calculate rows in output
# Using .row_names_info directly is about 6 times faster than using nrow
rows <- unlist(lapply(dfs, .row_names_info, 2L))
nrows <- sum(rows)
# Generate output template
ot <- output_template(dfs, nrows)
setters <- ot$setters
getters <- ot$getters
# Case of zero column inputs
if (length(setters) == 0) {
return(as.data.frame(matrix(nrow = nrows, ncol = 0)))
}
# Compute start and length for each data frame
pos <- matrix(c(cumsum(rows) - rows + 1, rows), ncol = 2)
# Copy inputs into output
for (i in seq_along(rows)) {
rng <- seq(pos[i, 1], length.out = pos[i, 2])
df <- dfs[[i]]
for (var in names(df)) {
setters[[var]](rng, df[[var]]) # nolint
}
}
quickdf(lapply(getters, function(x) x()))
}
# Construct named lists of setters and getters.
output_template <- function(dfs, nrows) {
vars <- unique(unlist(lapply(dfs, base::names))) # ~ 125,000/s
output <- vector("list", length(vars))
names(output) <- vars
seen <- rep(FALSE, length(output))
names(seen) <- vars
for (df in dfs) {
matching <- intersect(names(df), vars[!seen])
for (var in matching) {
output[[var]] <- allocate_column(df[[var]], nrows, dfs, var)
}
seen[matching] <- TRUE
if (all(seen)) break # Quit as soon as all done
}
list(setters=lapply(output, `[[`, "set"),
getters=lapply(output, `[[`, "get"))
}
# Allocate space for a column to be filled out by rbind.fill.
#
# @param example An example vector taken from the first data frame
# @param nrows The number of rows
# @param dfs The list of data frames that will be combined. This may
# need to be scanned (to unify factor levels or check array dimension
# consistency)
# @param var The name of the column.
#
# @return A list of two accessor functions `list(set=<>, get=<>)`.
# `.$set(rows, value)` stores data in the given rows.
# `.$get()` retreives the column data.
allocate_column <- function(example, nrows, dfs, var) {
#Compute the attributes of the column and allocate. Returns a
#mutator function f(rows, values) rather than the actual allocated
#column.
a <- attributes(example)
type <- typeof(example)
class <- a$class
isList <- is.recursive(example)
a$names <- NULL
a$class <- NULL
if (is.data.frame(example)) {
stop("Data frame column '", var, "' not supported by rbind.fill")
}
if (is.array(example)) {
if (length(dim(example)) > 1) {
if ("dimnames" %in% names(a)) {
a$dimnames[1] <- list(NULL)
if (!is.null(names(a$dimnames)))
names(a$dimnames)[1] <- ""
}
# Check that all other args have consistent dims
df_has <- vapply(dfs, function(df) var %in% names(df), FALSE)
dims <- unique(lapply(dfs[df_has], function(df) dim(df[[var]])[-1]))
if (length(dims) > 1)
stop("Array variable ", var, " has inconsistent dims")
a$dim <- c(nrows, dim(example)[-1])
length <- prod(a$dim)
} else {
#1d arrays devolve into vectors
a$dim <- NULL
a$dimnames <- NULL
length <- nrows
}
} else {
length <- nrows
}
if (is.factor(example)) {
df_has <- vapply(dfs, function(df) var %in% names(df), FALSE)
isfactor <- vapply(dfs[df_has], function(df) is.factor(df[[var]]), FALSE)
if (all(isfactor)) {
#will be referenced by the mutator
levels <- unique(unlist(lapply(dfs[df_has],
function(df) levels(df[[var]]))))
a$levels <- levels
handler <- "factor"
} else {
#fall back on character
type <- "character"
handler <- "character"
class <- NULL
a$levels <- NULL
}
} else if (inherits(example, "POSIXt")) {
tzone <- attr(example, "tzone")
class <- c("POSIXct", "POSIXt")
type <- "double"
handler <- "time"
} else {
handler <- type
}
column <- vector(type, length)
if (!isList) {
column[] <- NA
}
attributes(column) <- a
#construct an assignment expression like `column[rows, ...] <- what`
#appropriate for the number of dims
assignment <- make_assignment_call(length(a$dim))
#It is especially important never to inspect the column when in the
#main rbind.fill loop. To avoid that, we've done specialization
#(figuring out the array assignment form and data type) ahead of
#time, and instead of returning the column, we return accessor
#functions that close over the column.
setter <- switch(
handler,
character = function(rows, what) {
what <- as.character(what)
eval(assignment)
},
factor = function(rows, what) {
#duplicate what `[<-.factor` does
what <- match(what, levels)
#no need to check since we already computed levels
eval(assignment)
},
time = function(rows, what) {
what <- as.POSIXct(what, tz = tzone)
eval(assignment)
},
function(rows, what) {
eval(assignment)
})
getter <- function() {
class(column) <<- class
column
}
list(set=setter, get=getter)
}
#construct an assignment expression like `column[rows, ...] <- what`
#appropriate for the number of dims
make_assignment_call <- function(ndims) {
assignment <- quote(column[rows] <<- what)
if (ndims >= 2) {
assignment[[2]] <- as.call(
c(as.list(assignment[[2]]),
rep(list(quote(expr = )), ndims - 1)))
}
assignment
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.