# elasticity: Elasticity analysis of a projection matrix In popbio: Construction and Analysis of Matrix Population Models

## Description

Calculate the elasticities of eigenvalues to changes in the projection matrix elements

## Usage

 1 elasticity(A)

## Arguments

 A A projection matrix

## Details

see section 9.2 in Caswell (2001).

## Value

An elasticity matrix

Chris Stubben

## References

Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation, Second edition. Sinauer, Sunderland, Massachusetts, USA.

## Examples

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 data(teasel) elas<-elasticity(teasel) image2(elas, mar=c(1,3.5,5,1) ) title("Teasel elasticity matrix", line=2.5) # Summed elasticities for teasel. # fertility in last column, stasis P on diagonal, and growth in bottom-left triangle c(F=sum(elas[,6]), P=sum(diag(elas)), G=sum(elas[row(elas)>col(elas)])) data(tortoise) elas<-elasticity(tortoise[["med.high"]]) image2(elas, mar=c(1,3.5,5,1), log=FALSE) title("Tortoise elasticity matrix", line=2.5) # Summed elasticities for tortoise (see example 9.4) # fertility in top row, stasis on diagonal, and growth on subdiagonal c(F=sum(elas[1,]), P=sum(diag(elas)), G=sum(elas[row(elas)==col(elas)+1]))

popbio documentation built on May 4, 2018, 1:04 a.m.