Eigenvalue and eigenvector analysis of a projection matrix

Calculate the elasticities of eigenvalues to changes in the projection matrix elements

1 | ```
elasticity(A)
``` |

`A` |
A projection matrix |

see section 9.2 in Caswell (2001).

An elasticity matrix

Chris Stubben

Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation, Second edition. Sinauer, Sunderland, Massachusetts, USA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ```
data(teasel)
elas<-elasticity(teasel)
image2(elas, mar=c(1,3.5,5,1) )
title("Teasel elasticity matrix", line=2.5)
# Summed elasticities for teasel.
# fertility in last column, stasis P on diagonal, and growth in bottom-left triangle
c(F=sum(elas[,6]), P=sum(diag(elas)), G=sum(elas[row(elas)>col(elas)]))
data(tortoise)
elas<-elasticity(tortoise[["med.high"]])
image2(elas, mar=c(1,3.5,5,1), log=FALSE)
title("Tortoise elasticity matrix", line=2.5)
# Summed elasticities for tortoise (see example 9.4)
# fertility in top row, stasis on diagonal, and growth on subdiagonal
c(F=sum(elas[1,]), P=sum(diag(elas)), G=sum(elas[row(elas)==col(elas)+1]))
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.