multiresultm | R Documentation |
Generates multinomial random numbers for state transitions and lognormal or binomial (for clutch size=1) random numbers for fertilities and returns a vector of the number of individuals per stage class at t+1.
multiresultm(n, T, F, varF = NULL)
n |
the vector of numbers of individuals per class at t |
T |
a transition T matrix |
F |
a fertility F matrix |
varF |
a matrix of inter-individual variance in fertilities, default is NULL for simulating population where clutch size = 1, so that fertilities give the probabilities of birth |
Adapted from Matlab code in Box 8.11 in Morris and Doak (2002) and section 15.1.3 in Caswell (2001)
a vector of the number of individuals per class at t+1.
Patrick Nantel
Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation, Second edition. Sinauer, Sunderland, Massachusetts, USA.
Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology: Theory and practice of population viability analysis. Sinauer, Sunderland, Massachusetts, USA.
x <- splitA(whale)
whaleT <- x$T
whaleF <- x$F
multiresultm(c(1,9,9,9),whaleT, whaleF)
multiresultm(c(1,9,9,9),whaleT, whaleF)
## create graph similar to Fig 15.3 a
reps <- 10 # number of trajectories
tmax <- 200 # length of the trajectories
totalpop <- matrix(0,tmax,reps) # initializes totalpop matrix to store trajectories
nzero <- c(1,1,1,1) # starting population size
for (j in 1:reps) {
n <- nzero
for (i in 1:tmax) {
n <- multiresultm(n,whaleT,whaleF)
totalpop[i,j] <- sum(n)
}
}
matplot(totalpop, type = 'l', log="y",
xlab = 'Time (years)', ylab = 'Total population')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.