Nothing
#This shifting function has deprecated.
# .shift <- function(smpl, lib, max_shift, x, res, obj) {
#
# #create a blank list
# pure_patterns <- list()
#
# #Create a new sample pattern with res times the resolution of the original
# sample_pattern <- data.frame(stats::approx(x = smpl[,1], y = smpl[,2],
# method = "linear", n = length(smpl[,1]) * res))
#
# TTH_long <- sample_pattern[[1]]
# sample_long <- sample_pattern[[2]]
#
# #Do the same for all data in the reference library
# for (i in 1:ncol(lib$xrd)) {
# pure_patterns[[i]] <- stats::approx(x = lib$tth, y = lib$xrd[, i],
# method = "linear", n = nrow(lib$xrd) * res)[[2]]
# }
#
# #convert from list to data frame, to matrix
# if (length(pure_patterns) == 1) {
# pure_patterns <- data.frame("phase" = pure_patterns[[1]])
# names(pure_patterns) <- names(lib$xrd)
# pure_patterns <- as.matrix(pure_patterns)
# } else {
# pure_patterns <- data.frame(pure_patterns)
# names(pure_patterns) <- names(lib$xrd)
# pure_patterns <- as.matrix(pure_patterns)
# }
#
# #Define a value that will be used to shift the data.
# TTH_res <- (TTH_long[length(TTH_long)] - TTH_long[1])/(length(TTH_long)-1)
# #Round up the number of increments the data can shift by (based on max_shift)
# shift_value <- round(max_shift/TTH_res)
#
# #Shorten the sample pattern and 2theta to account for
# #the maximum/minimum shifts that might be applied
# sample_long <- sample_long[((shift_value + 1):(length(sample_long)-shift_value))]
# TTH_long <- TTH_long[((shift_value + 1):(length(TTH_long) - shift_value))]
#
# #define an integer sequence of positive and negative shifts
# initial_shift <- c((0 - shift_value):shift_value)
#
# shifting_length <- nrow(pure_patterns)-shift_value
#
# #Create a matrix of the shortened length that will be used during alignment
# shift_mat <- pure_patterns[((shift_value + 1):(shifting_length)), ]
#
# if (ncol(pure_patterns) == 1) {
# shift_mat <- data.frame("phase" = shift_mat)
# names(shift_mat) <- names(lib$xrd)
# shift_mat <- as.matrix(shift_mat)
# }
#
# #define blank lists to be populated during alignment
# v <- list()
# vm <- list()
# vf <- list()
# d <- list()
#
# #This vector will be used to identify the optimum shift
# #dmin <- c()
#
# #This vs matrix will be populated with the aligned patterns
# vs <- shift_mat
#
# cat("\n-Shifting patterns")
#
# for (i in 1:ncol(shift_mat)) {
# for (j in 1:length(initial_shift)) {
#
# v[[j]] <- pure_patterns[c(((shift_value + 1) + (initial_shift[j])):(shifting_length + (initial_shift[j]))), i]
#
# #adjusted matrix for each shift
#
# vm[[j]] <- shift_mat
# # #add the shifted data
# vm[[j]][,i] <- v[[j]]
#
# # compute the fitted pattern
# vf[[j]] <- apply(sweep(vm[[j]], 2, x, "*"), 1, sum)
#
# #Compute Rwp if defined in obj
# if (obj == "Rwp") {
#
# d[[j]] <- sqrt(sum((1/sample_long) * ((sample_long - vf[[j]])^2)) /
# sum((1/sample_long) * (sample_long^2)))
#
# }
#
# #Compute the Delta is defined in obj
# if (obj == "Delta") {
#
# d[[j]] <- sum(abs(sample_long - vf[[j]]))
#
# }
#
# #Compute R if defined in obj
# if (obj == "R") {
#
# d[[j]] <- sqrt(sum((sample_long - vf[[j]])^2)/sum(sample_long^2))
#
# }
#
# #identify which shifted pattern results in minimum Delta
# #dmin[[i]] <- which.min(d)
#
# #Populate a library with the optimumly shifted references
# vs[, i] <- vm[[which.min(d)]][, i]
# }
# }
#
# #re-approximate the data to the old TTH resolution (i.e. reduce by res times)
# vs_short <- list()
#
# #re-approximate the reference library
# for (i in 1:ncol(vs)) {
# vs_short[[i]] <- stats::approx(x = 1:nrow(vs), y = vs[ , i], method = "linear", n = (nrow(vs) / res))[[2]]
# }
# #Convert from list to data frame to matrix
#
# if (length(vs_short) == 1) {
# vs_short <- data.frame("phase" = vs_short[[1]])
# names(vs_short) <- names(data.frame(vs))
# vs_short <- as.matrix(vs_short)
# } else {
# vs_short <- data.frame(vs_short)
# names(vs_short) <- names(data.frame(vs))
# vs_short <- as.matrix(vs_short)
# }
#
# #reapproximate the sample
# sample_pattern <- stats::approx(x = TTH_long, y = sample_long, method = "linear", n = (nrow(vs) / res))[[2]]
#
# #reapproximate the 2theta
# TTH_short <- stats::approx(x = TTH_long, y = vs[, 1], method = "linear", n = (nrow(vs) / res))[[1]]
#
# vs <- vs_short
# TTH <- TTH_short
#
# out <- list("smpl" = data.frame("tth" = TTH, "counts" = sample_pattern),
# "lib" = vs)
#
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.