Nothing
ekm <- function (x, centers, dmetric="euclidean", alginitv="hartiganwong",
nstart=1, iter.max=1000, stand=FALSE, numseed){
if(missing(x))
stop("Missing data set")
if(is.null(x))
stop("Data set is null")
if((is.data.frame(x)) || (is.vector(x)))
x <- as.matrix(x)
if(!is.matrix(x))
stop("Data set must be a vector, data frame or matrix")
if(any(is.na(x)))
stop("Data set should not contain NA values. Remove NAs and try again")
if(!is.numeric(x))
stop("Data set must be a numeric vector, data frame or matrix")
n <- nrow(x) ; p <- ncol(x)
if(missing(centers))
stop("Missing argument 'centers'")
if(is.data.frame(centers))
centers <- as.matrix(centers)
if(is.matrix(centers)){
if(is.null(centers))
stop("Centers contains no data")
if(any(is.na(centers)))
stop("Centers should not contain NA values")
if(!is.numeric(centers))
stop("Centers should be numeric")
else
k <- nrow(centers)
}
else{
if(!is.numeric(centers))
stop("Centers should be an integer for the number of clusters or a numeric prototypes matrix")
k <- ceiling(centers)
}
if((k < 1) || (k > n))
stop(paste0("k, number of clusters should be between 1 and ", n, ". Check the value of 'centers' argument"))
if(!missing(numseed)){
if(!is.numeric(numseed))
stop("Argument numseed should be a number")
else
set.seed(numseed)
}
alginitv <- match.arg(alginitv, inaparc::get.algorithms("prototype"))
compv <- parse(text = paste0("inaparc::", alginitv, "(x, k)$v"))
if(!is.matrix(centers))
centers <- matrix(nrow=k, ncol=p, eval(compv))
dmetrics <- c("euclidean")
dmetric <- match.arg(dmetric, dmetrics)
compd <- parse(text = paste0(".compdist(x[i,], v[j,], dmetric='", dmetric, "')"))
if(!is.logical(stand))
stop("Value of argument 'stand' should be TRUE or FALSE")
if(stand){
x <- scale(x, center = TRUE, scale = TRUE)[, ]
centers <- scale(centers, center = TRUE, scale = TRUE)[, ]
}
if(!is.numeric(nstart))
stop("Number of starts must be integer")
if(nstart < 1)
stop("Number of starts cannot be less than 1")
if(nstart%%ceiling(nstart) > 0)
nstart <- ceiling(nstart)
if(!is.numeric(iter.max))
stop("Maximum number of iterations must be a positive integer")
else
iter.max <- ceiling(iter.max)
if(iter.max <= 1)
stop("Maximum number of iterations must be equal to or greater than 1")
d <- matrix(nrow = n, ncol = k, 0)
func.val <- numeric(nstart)
comp.time <- numeric(nstart)
iter.num <- numeric(nstart)
best.func <- Inf
for(start.idx in 1:nstart){
if(start.idx > 1){
set.seed(as.integer(Sys.time()) + start.idx)
centers <- eval(compv)
if(stand)
centers <- scale(centers, center = TRUE, scale = TRUE)[, ]
if(!missing(numseed))
set.seed(numseed)
}
cputime <- system.time(
res.km <- kmeans(x = x, centers = centers, iter.max = iter.max)
)
comp.time[start.idx] <- cputime[1]
iter.num[start.idx] <- res.km$iter
obj.func <- res.km$tot.withinss
func.val[start.idx] <- obj.func
if(obj.func < best.func){
best.func <- obj.func
v0 <- centers
best.v <- v <- res.km$centers
for(i in 1:n)
for(j in 1:k)
d[i,j] <- eval(compd)
best.d <- d
betweenss <- res.km$betweenss
withinss <- res.km$withinss
tot.withinss <- res.km$tot.withinss
tot.ss <- res.km$totss
cluster <- res.km$cluster
size <- res.km$size
best.start <- start.idx
}
}
u <- matrix(nrow=n, ncol=k, 0)
for(i in 1:n)
for(j in 1:k)
u[i, cluster[i]] <- 1
csumsqrs <- list(betweenss, withinss, tot.withinss, tot.ss)
names(csumsqrs) <- c("between.ss", "within.ss", "tot.within.ss", "tot.ss")
if(is.null(rownames(x)))
rnames <- paste(1:n)
else
rnames <- rownames(x)
if(is.null(colnames(x)))
cnames <- paste("p", 1:p, sep = "")
else
cnames <- colnames(x)
rownames(x) <- rnames; colnames(x) <- cnames
rownames(best.v) <- paste("Cluster", 1:k, sep = " ")
colnames(best.v) <- cnames
colnames(u) <- rownames(best.v)
rownames(u) <- rownames(x)
colnames(v0) <- colnames(best.v)
rownames(v0) <- rownames(best.v)
rownames(best.d) <- rnames
colnames(best.d) <- rownames(best.v)
names(cluster) <- paste(1:n, sep = " ")
names(size) <- paste(1:k, sep = " ")
result = list()
result$u <- u
result$t <- NULL
result$v <- best.v
result$v0 <- v0
result$d <- best.d
result$f <- NULL
result$x <- x
result$cluster <- cluster
result$csize <- size
result$sumsqrs <- csumsqrs
result$k <- k
result$m <- NULL
result$eta <- NULL
result$a <- NULL
result$b <- NULL
result$beta <- NULL
result$delta <- NULL
result$gamma <- NULL
result$omega <- NULL
result$ent <- NULL
result$iter <- iter.num
result$best.start <- best.start
result$func.val <- func.val
result$comp.time <- comp.time
result$inpargs <- list()
result$inpargs[1] <- as.integer(iter.max)
result$inpargs[2] <- NA
result$inpargs[3] <- dmetric
result$inpargs[4] <- alginitv
result$inpargs[5] <- NA
result$inpargs[6] <- NA
result$inpargs[7] <- NA
result$inpargs[8] <- stand
names(result$inpargs) <- c("iter.max", "con.val", "dmetric", "alginitv", "alginitu", "fixcent", "fixmemb", "stand")
result$algorithm <- "KM"
result$call <- match.call()
class(result) <- c("ppclust")
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.