ggPredict | R Documentation |
Visualize predictions from the multiple regression models.
ggPredict(
fit,
pred = NULL,
modx = NULL,
mod2 = NULL,
modx.values = NULL,
mod2.values = NULL,
dep = NULL,
mode = 1,
colorn = 3,
maxylev = 6,
show.point = getOption("ggPredict.show.point", TRUE),
show.error = FALSE,
error.color = "red",
jitter = NULL,
se = FALSE,
alpha = 0.1,
show.text = TRUE,
add.modx.values = TRUE,
add.loess = FALSE,
labels = NULL,
angle = NULL,
xpos = NULL,
vjust = NULL,
digits = 2,
facet.modx = FALSE,
facetbycol = TRUE,
plot = TRUE,
summarymode = 1,
...
)
fit |
An object of class "lm" or "glm" |
pred |
The name of predictor variable |
modx |
Optional. The name of moderator variable |
mod2 |
Optional. The name of second moderator variable |
modx.values |
For which values of the moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included. |
mod2.values |
For which values of the second moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included. |
dep |
Optional. The name of dependent variable |
mode |
A numeric. Useful when the variables are numeric. If 1, c(-1,0,1)*sd + mean is used. If 2, the 14th, 50th, 86th percentile values used. If 3 sequence over a the range of a vector used |
colorn |
The number of regression lines when the modifier variable(s) are numeric. |
maxylev |
An integer indicating the maximum number of levels of numeric variable be treated as a categorical variable |
show.point |
Logical. Whether or not add points |
show.error |
Logical. Whether or not show error |
error.color |
color of error. dafault value is "red" |
jitter |
logical Whether or not use geom_jitter |
se |
Logical. Whether or not add confidence interval |
alpha |
A numeric. Transparency |
show.text |
Logical. Whether or not add regression equation as label |
add.modx.values |
Logical. Whether or not add moderator values to regression equation |
add.loess |
Logical. Whether or not add loess line |
labels |
labels on regression lines |
angle |
angle of text |
xpos |
x axis position of label |
vjust |
vertical alignment of labels |
digits |
integer indicating the number of decimal places |
facet.modx |
Create separate panels for each level of the moderator? Default is FALSE |
facetbycol |
Logical. |
plot |
Logical. Should a plot of the results be printed? Default is TRUE. |
summarymode |
An integer indicating method of extracting typical value of variables. If 1, typical() is used.If 2, mean() is used. |
... |
additional arguments to be passed to geom_text |
fit=loess(mpg~hp*wt*am,data=mtcars)
ggPredict(fit)
ggPredict(fit,hp)
## Not run:
ggPredict(fit,hp,wt)
fit=lm(mpg~wt*hp-1,data=mtcars)
ggPredict(fit,xpos=0.7)
fit=lm(mpg~hp*wt,data=mtcars)
ggPredict(fit)
ggPredict(fit,labels=paste0("label",1:3),xpos=c(0.3,0.6,0.4))
ggPredict(fit,se=TRUE)
ggPredict(fit,mode=3,colorn=40,show.text=FALSE)
fit=lm(log(mpg)~hp*wt,data=mtcars)
ggPredict(fit,dep=mpg)
fit=lm(mpg~hp*wt*cyl,data=mtcars)
ggPredict(fit,modx=wt,modx.values=c(2,3,4,5),mod2=cyl,show.text=FALSE)
ggPredict(fit,hp,wt,show.point=FALSE,se=TRUE,xpos=0.5)
ggPredict(fit,modx=wt,xpos=0.3)
ggPredict(fit)
mtcars$engine=ifelse(mtcars$vs==0,"V-shaped","straight")
fit=lm(mpg~wt*engine,data=mtcars)
ggPredict(fit)
require(TH.data)
fit=glm(cens~pnodes*horTh,data=GBSG2,family=binomial)
ggPredict(fit,pnodes,horTh,se=TRUE,xpos=c(0.6,0.3),angle=c(40,60),vjust=c(2,-0.5))
fit1=glm(cens~pnodes,data=GBSG2,family=binomial)
ggPredict(fit1,vjust=1.5,angle=45)
fit3=glm(cens~pnodes*age,data=GBSG2,family=binomial)
ggPredict(fit3,pred=pnodes,modx=age,mode=3,colorn=10,show.text=FALSE)
fit2=glm(cens~pnodes*age*horTh,data=GBSG2,family=binomial)
ggPredict(fit2,pred=pnodes,modx=age,mod2=horTh,mode=3,colorn=10,show.text=FALSE)
fit=lm(mpg~log(hp)*wt,data=mtcars)
ggPredict(fit,hp,wt)
fit=lm(mpg~hp*wt+disp+gear+carb+am,data=mtcars)
ggPredict(fit,disp,gear,am)
library(moonBook)
fit=lm(weight~I(height^3)+I(height^2)+height+sex,data=radial)
ggPredict(fit)
predict3d(fit)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.