# define: Definition of 'truePrevMulti' and 'truePrevMulti2' model In prevalence: Tools for Prevalence Assessment Studies

## Description

These utility functions generate definitions for the test results and priors used by `truePrevMulti` and `truePrevMulti2`.

## Usage

 ```1 2 3``` ```define_x(h) define_prior(h) define_prior2(h) ```

## Arguments

 `h` Number of tests

## Details

The vector of apparent tests results, `x`, must contain the number of samples corresponding to each combination of test results. The models assume that the first value corresponds to the number of samples that tested positive on all tests and that the last value corresponds to the number of samples that tested negative on all tests.

Function `truePrevMulti` estimates true prevalence from individual samples tested with `h` tests, using the approach of Berkvens et al. (2006). The prior in the multinomial model consists of a vector `theta`, which holds values for the true prevalence (TP), the sensitivity and specificity of the first test (SE1, SP1), and the conditional dependencies between the results of the subsequent tests and the preceding one(s). `define_prior` generates the definition of `prior` for `h` tests.

Function `truePrevMulti2` implements and extends the approach described by Dendukuri and Joseph (2001), which uses a multinomial distribution to model observed test results, and in which conditional dependence between tests is modelled through covariances. Argument `prior` consists of prior distributions for:

• True Prevalence: `TP`

• SEnsitivity of each individual test: vector `SE`

• SPecificity of each individual test: vector `SP`

• Conditional covariance of all possible test combinations given a truly positive disease status: vector `a`

• Conditional covariance of all possible test combinations given a truly negative disease status: vector `b`

`define_prior2` generates the definition of `prior` for `h` tests.

## Author(s)

Brecht Devleesschauwer <[email protected]>

## References

• Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E (2006) Estimating disease prevalence in a Bayesian framework using probabilistic constraints. Epidemiology 17:145-153

• Dendukuri N, Joseph L (2001) Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics 57:158-167

`truePrevMulti`, `truePrevMulti2`

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81``` ```## how is a 2-test model defined? define_x(2) # Definition of the apparent test results, 'x', for 2 tests: # x[1] : T1-,T2- # x[2] : T1-,T2+ # x[3] : T1+,T2- # x[4] : T1+,T2+ define_prior(2) # Conditional probability scheme # Definition of the prior, 'theta', for 2 tests: # theta[1] : P(D+) = TP # theta[2] : P(T1+|D+) = SE1 # theta[3] : P(T1-|D-) = SP1 # theta[4] : P(T2+|D+,T1+) # theta[5] : P(T2+|D+,T1-) # theta[6] : P(T2-|D-,T1-) # theta[7] : P(T2-|D-,T1+) define_prior2(2) # Covariance scheme # Definition of the prior for 2 tests: # TP : True Prevalence # SE[1] : Sensitity T1 # SE[2] : Sensitity T2 # SP[1] : Specificity T1 # SP[2] : Specificity T2 # a[1] : Covariance(T1,T2|D+) # b[1] : Covariance(T1,T2|D-) ## how is a 3-test model defined? define_x(3) # Definition of the apparent test results, 'x', for 3 tests: # x[1] : T1-,T2-,T3- # x[2] : T1-,T2-,T3+ # x[3] : T1-,T2+,T3- # x[4] : T1-,T2+,T3+ # x[5] : T1+,T2-,T3- # x[6] : T1+,T2-,T3+ # x[7] : T1+,T2+,T3- # x[8] : T1+,T2+,T3+ define_prior(3) # Conditional probability scheme # Definition of the prior, 'theta', for 3 tests: # theta[1] : P(D+) = TP # theta[2] : P(T1+|D+) = SE1 # theta[3] : P(T1-|D-) = SP1 # theta[4] : P(T2+|D+,T1+) # theta[5] : P(T2+|D+,T1-) # theta[6] : P(T2-|D-,T1-) # theta[7] : P(T2-|D-,T1+) # theta[8] : P(T3+|D+,T1+,T2+) # theta[9] : P(T3+|D+,T1+,T2-) # theta[10] : P(T3+|D+,T1-,T2+) # theta[11] : P(T3+|D+,T1-,T2-) # theta[12] : P(T3-|D-,T1-,T2-) # theta[13] : P(T3-|D-,T1-,T2+) # theta[14] : P(T3-|D-,T1+,T2-) # theta[15] : P(T3-|D-,T1+,T2+) define_prior2(3) # Covariance scheme # Definition of the prior for 3 tests: # TP : True Prevalence # SE[1] : Sensitity T1 # SE[2] : Sensitity T2 # SE[3] : Sensitity T3 # SP[1] : Specificity T1 # SP[2] : Specificity T2 # SP[3] : Specificity T3 # a[1] : Covariance(T1,T2|D+) # a[2] : Covariance(T1,T3|D+) # a[3] : Covariance(T2,T3|D+) # a[4] : Covariance(T1,T2,T3|D+) # b[1] : Covariance(T1,T2|D-) # b[2] : Covariance(T1,T3|D-) # b[3] : Covariance(T2,T3|D-) # b[4] : Covariance(T1,T2,T3|D-) ```

### Example output

```Loading required package: rjags
Linked to JAGS 4.2.0
Definition of the apparent test results, 'x', for 2 tests:
x[1] : T1+,T2+
x[2] : T1+,T2-
x[3] : T1-,T2+
x[4] : T1-,T2-
Conditional probability scheme
Definition of the prior, 'theta', for 2 tests:
theta[1] : P(D+) = TP
theta[2] : P(T1+|D+) = SE1
theta[3] : P(T1-|D-) = SP1
theta[4] : P(T2+|D+,T1+)
theta[5] : P(T2+|D+,T1-)
theta[6] : P(T2-|D-,T1-)
theta[7] : P(T2-|D-,T1+)
Covariance scheme
Definition of the prior for 2 tests:
TP :    True Prevalence
SE[1] : Sensitity T1
SE[2] : Sensitity T2
SP[1] : Specificity T1
SP[2] : Specificity T2
a[1] :  Covariance(T1,T2|D+)
b[1] :  Covariance(T1,T2|D-)
Definition of the apparent test results, 'x', for 3 tests:
x[1] : T1+,T2+,T3+
x[2] : T1+,T2+,T3-
x[3] : T1+,T2-,T3+
x[4] : T1+,T2-,T3-
x[5] : T1-,T2+,T3+
x[6] : T1-,T2+,T3-
x[7] : T1-,T2-,T3+
x[8] : T1-,T2-,T3-
Conditional probability scheme
Definition of the prior, 'theta', for 3 tests:
theta[1] : P(D+) = TP
theta[2] : P(T1+|D+) = SE1
theta[3] : P(T1-|D-) = SP1
theta[4] : P(T2+|D+,T1+)
theta[5] : P(T2+|D+,T1-)
theta[6] : P(T2-|D-,T1-)
theta[7] : P(T2-|D-,T1+)
theta[8] : P(T3+|D+,T1+,T2+)
theta[9] : P(T3+|D+,T1+,T2-)
theta[10] : P(T3+|D+,T1-,T2+)
theta[11] : P(T3+|D+,T1-,T2-)
theta[12] : P(T3-|D-,T1-,T2-)
theta[13] : P(T3-|D-,T1-,T2+)
theta[14] : P(T3-|D-,T1+,T2-)
theta[15] : P(T3-|D-,T1+,T2+)
Covariance scheme
Definition of the prior for 3 tests:
TP :    True Prevalence
SE[1] : Sensitity T1
SE[2] : Sensitity T2
SE[3] : Sensitity T3
SP[1] : Specificity T1
SP[2] : Specificity T2
SP[3] : Specificity T3
a[1] :  Covariance(T1,T2|D+)
a[2] :  Covariance(T1,T3|D+)
a[3] :  Covariance(T2,T3|D+)
a[4] :  Covariance(T1,T2,T3|D+)
b[1] :  Covariance(T1,T2|D-)
b[2] :  Covariance(T1,T3|D-)
b[3] :  Covariance(T2,T3|D-)
b[4] :  Covariance(T1,T2,T3|D-)
```

prevalence documentation built on May 29, 2017, 11:59 a.m.