truePrevMulti2: Estimate true prevalence from individuals samples using...

View source: R/truePrevMulti-main.R

truePrevMulti2R Documentation

Estimate true prevalence from individuals samples using multiple tests – covariance scheme

Description

Bayesian estimation of true prevalence from apparent prevalence obtained by applying multiple tests to individual samples. truePrevMulti2 implements and extends the approach described by Dendukuri and Joseph (2001), which uses a multinomial distribution to model observed test results, and in which conditional dependence between tests is modelled through covariances.

Usage

truePrevMulti2(x, n, prior, nchains = 2, burnin = 10000, update = 10000,
               verbose = FALSE)

Arguments

x

Vector of apparent test results; see 'Details' below

n

The total sample size

prior

The prior distributions; see 'Details' below

nchains

The number of chains used in the estimation process; must be ≥ 2

burnin

The number of discarded model iterations; defaults to 10,000

update

The number of withheld model iterations; defaults to 10,000

verbose

Logical flag, indicating if JAGS process output should be printed to the R console; defaults to FALSE

Details

truePrevMulti2 calls on JAGS via the rjags package to estimate true prevalence from apparent prevalence in a Bayesian framework. truePrevMulti2 fits a multinomial model to the apparent test results obtained by testing individual samples with a given number of tests. To see the actual fitted model, see the model slot of the prev-object.

The vector of apparent tests results, x, must contain the number of samples corresponding to each combination of test results. To see how this vector is defined for the number of tests h at hand, use define_x.

Argument prior consists of prior distributions for:

  • True Prevalence: TP

  • SEnsitivity of each individual test: vector SE

  • SPecificity of each individual test: vector SP

  • Conditional covariance of all possible test combinations given a truly positive disease status: vector a

  • Conditional covariance of all possible test combinations given a truly negative disease status: vector b

To see how prior is defined for the number of tests h at hand, use define_prior2.

The values of prior can be specified in two ways, referred to as BUGS-style and list-style, respectively. See also below for some examples.

For BUGS-style specification, the values of prior should be given between curly brackets (i.e., {}), separated by line breaks. Priors can be specified to be deterministic (i.e., fixed), using the <- operator, or stochastic, using the ~ operator. In the latter case, the following distributions can be used:

  • Uniform: dunif(min, max)

  • Beta: dbeta(alpha, beta)

  • Beta-PERT: dpert(min, mode, max)

Alternatively, priors can be specified in a named list() as follows:

  • Fixed: list(dist = "fixed", par)

  • Uniform: list(dist = "uniform", min, max)

  • Beta: list(dist = "beta", alpha, beta)

  • Beta-PERT: list(dist = "pert", method, a, m, b, k)
    'method' must be "classic" or "vose";
    'a' denotes the pessimistic (minimum) estimate, 'm' the most likely estimate, and 'b' the optimistic (maximum) estimate;
    'k' denotes the scale parameter.
    See betaPERT for more information on Beta-PERT parameterization.

  • Beta-Expert: list(dist = "beta-expert", mode, mean, lower, upper, p)
    'mode' denotes the most likely estimate, 'mean' the mean estimate;
    'lower' denotes the lower bound, 'upper' the upper bound;
    'p' denotes the confidence level of the expert.
    Only mode or mean should be specified; lower and upper can be specified together or alone.
    See betaExpert for more information on Beta-Expert parameterization.

Value

An object of class prev.

Note

Markov chain Monte Carlo sampling in truePrevMulti2 is performed by JAGS (Just Another Gibbs Sampler) through the rjags package. JAGS can be downloaded from https://mcmc-jags.sourceforge.io/.

Author(s)

Brecht Devleesschauwer <brechtdv@gmail.com>

References

  • Dendukuri N, Joseph L (2001) Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics 57:158-167

See Also

define_x: how to define the vector of apparent test results x
define_prior2: how to define prior

coda for various functions that can be applied to the prev@mcmc object
truePrevMulti: estimate true prevalence from apparent prevalence obtained by testing individual samples with multiple tests, using a conditional probability scheme
truePrev: estimate true prevalence from apparent prevalence obtained by testing individual samples with a single test
truePrevPools: estimate true prevalence from apparent prevalence obtained by testing pooled samples
betaPERT: calculate the parameters of a Beta-PERT distribution
betaExpert: calculate the parameters of a Beta distribution based on expert opinion

Examples

## Not run: 
## ===================================================== ##
## 2-TEST EXAMPLE: Strongyloides                         ##
## ----------------------------------------------------- ##
## Two tests were performed on 162 humans                ##
## -> T1 = stool examination                             ##
## -> T2 = serology test                                 ##
## Expert opinion generated the following priors:        ##
## -> SE1 ~ dbeta( 4.44, 13.31)                          ##
## -> SP1 ~ dbeta(71.25,  3.75)                          ##
## -> SE2 ~ dbeta(21.96,  5.49)                          ##
## -> SP2 ~ dbeta( 4.10,  1.76)                          ##
## The following results were obtained:                  ##
## -> 38 samples T1+,T2+                                 ##
## ->  2 samples T1+,T2-                                 ##
## -> 87 samples T1-,T2+                                 ##
## -> 35 samples T1-,T2-                                 ##
## ===================================================== ##

## how is the 2-test model defined?
define_x(2)
define_prior2(2)

## fit Strongyloides 2-test model
## a first model assumes conditional independence
## -> set covariance terms to zero
strongy_indep <-
truePrevMulti2(
  x = c(38, 2, 87, 35),
  n = 162,
  prior = {
    TP ~ dbeta(1, 1)
    SE[1] ~ dbeta( 4.44, 13.31)
    SP[1] ~ dbeta(71.25,  3.75)
    SE[2] ~ dbeta(21.96,  5.49)
    SP[2] ~ dbeta( 4.10,  1.76)
    a[1] <- 0
    b[1] <- 0
  })

## show model results
strongy_indep

## fit same model using 'list-style'
strongy_indep <-
truePrevMulti2(
  x = c(38, 2, 87, 35),
  n = 162,
  prior =
    list(
      TP = list(dist = "beta", alpha = 1, beta = 1),
      SE1 = list(dist = "beta", alpha = 4.44, beta = 13.31),
      SP1 = list(dist = "beta", alpha = 71.25, beta = 3.75),
      SE2 = list(dist = "beta", alpha = 21.96, beta = 5.49),
      SP2 = list(dist = "beta", alpha = 4.10, beta = 1.76),
      a1 = 0,
      b1 = 0
    )
  )

## show model results
strongy_indep

## fit Strongyloides 2-test model
## a second model allows for conditional dependence
## -> a[1] is the covariance between T1 and T2, given D+
## -> b[1] is the covariance between T1 and T2, given D-
## -> a[1] and b[1] can range between +/- 2^-h, ie, (-.25, .25)
strongy <-
truePrevMulti2(
  x = c(38, 2, 87, 35),
  n = 162,
  prior = {
    TP ~ dbeta(1, 1)
    SE[1] ~ dbeta( 4.44, 13.31)
    SP[1] ~ dbeta(71.25,  3.75)
    SE[2] ~ dbeta(21.96,  5.49)
    SP[2] ~ dbeta( 4.10,  1.76)
    a[1] ~ dunif(-0.25, 0.25)
    b[1] ~ dunif(-0.25, 0.25)
  })

## explore model structure
str(strongy)         # overall structure
str(strongy@par)     # structure of slot 'par'
str(strongy@mcmc)    # structure of slot 'mcmc'
strongy@model        # fitted model
strongy@diagnostics  # DIC, BGR and Bayes-P values

## standard methods
print(strongy)
summary(strongy)
par(mfrow = c(2, 2))
plot(strongy)           # shows plots of TP by default
plot(strongy, "SE[1]")  # same plots for SE1
plot(strongy, "SE[2]")  # same plots for SE2
plot(strongy, "SP[1]")  # same plots for SP1
plot(strongy, "SP[2]")  # same plots for SP2
plot(strongy, "a[1]")   # same plots for a[1]
plot(strongy, "b[1]")   # same plots for b[1]

## coda plots of all parameters
par(mfrow = c(2, 4)); densplot(strongy, col = "red")
par(mfrow = c(2, 4)); traceplot(strongy)
par(mfrow = c(2, 4)); gelman.plot(strongy)
par(mfrow = c(2, 4)); autocorr.plot(strongy)

## End(Not run)

prevalence documentation built on June 4, 2022, 1:05 a.m.