| prev-class | R Documentation |
"prev"The "prev" class represents output from Bayesian true prevalence
estimation models.
Objects of class "prev" are created by truePrev, truePrevMulti, truePrevMulti2 and truePrevPools.
Objects of class "prev" contain the following four slots:
par:A list of input parameters
model:The fitted Bayesian model, in BUGS language (S3 class "prevModel")
mcmc:A list, with one element per chain, of the simulated true prevalences, sensitivities and specificities
diagnostics:A list with elements for the Deviance Information Criterion ($DIC), the Brooks-Gelman-Rubin statistic ($BGR), and in the case of truePrevMulti and truePrevMulti2, the Bayes-P statistic
($bayesP)
Brecht Devleesschauwer <brechtdv@gmail.com>
truePrev, truePrevMulti, truePrevMulti2, truePrevPools
show-methods, print-methods, summary-methods, convert-methods, plot-methods, plot-methods-coda
## Taenia solium cysticercosis in Nepal SE <- list(dist = "uniform", min = 0.60, max = 1.00) SP <- list(dist = "uniform", min = 0.75, max = 1.00) TP <- truePrev(x = 142, n = 742, SE = SE, SP = SP) ## Summarize estimates per chain summary(TP) ## Diagnostic plots par(mfrow = c(2, 2)) plot(TP) ## Generic plots from package coda par(mfrow = c(1, 1)) densplot(TP) traceplot(TP) gelman.plot(TP) autocorr.plot(TP) ## Use 'slotNames()' to see the slots of object TP slotNames(TP) ## Every slot can be accessed using the '@' operator ## Use 'str()' to see the structure of each object str(TP@par) # input parameters str(TP@model) # fitted model str(TP@mcmc) # simulated TP, SE, SP str(TP@diagnostics) # DIC and BGR (and bayesP) ## Each element of TP@mcmc inherits from coda class 'mcmc.list' ## List all available methods for this class methods(class = "mcmc.list") ## List all available functions in the coda package library(help = "coda") ## Highest Posterior Density interval, from coda package coda::HPDinterval(TP@mcmc$TP)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.