Nothing
test_that("raster features", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# define spatial properties
terra::ext(sim_pu_raster) <- c(0, 2e5, 0, 2e5)
terra::crs(sim_pu_raster) <- terra::crs("epsg:3857")
terra::ext(sim_features) <- terra::ext(sim_pu_raster)
terra::crs(sim_features) <- terra::crs(sim_pu_raster)
# create problem
p <- problem(sim_pu_raster, sim_features)
# compute values in km^2
fs <- p$feature_abundances_km2_in_total_units()
# compute values in absolute units
fa <- p$feature_abundances_in_total_units()
# define parameters
prob_target <- runif(terra::nlyr(sim_features))
hist_area <- fs * runif(terra::nlyr(sim_features), 1, 3)
# create problem
p <-
p %>%
add_auto_targets(
method = spec_duran_targets(
probability_target = prob_target,
historical_area = hist_area,
area_units = "km2"
)
)
# calculate targets
targets <- p$targets$output(p)
# calculate correct targets
## set criteria
correct_targets <- hist_area * (prob_target^(1 / 0.25))
correct_targets <- pmin(correct_targets, fs)
## calculate targets in absolute units
correct_targets <- fa * (correct_targets / fs)
# run tests
print(p)
expect_inherits(targets, "tbl_df")
expect_true(all(names(targets) == c("feature", "zone", "sense", "value")))
expect_inherits(targets$feature, "integer")
expect_inherits(targets$zone, "list")
expect_inherits(targets$value, "numeric")
expect_inherits(targets$sense, "character")
expect_equal(targets$feature, seq_len(terra::nlyr(sim_features)))
expect_equal(unlist(targets$zone), rep(1, terra::nlyr(sim_features)))
expect_equal(targets$value, c(correct_targets))
expect_equal(targets$sense, rep(">=", terra::nlyr(sim_features)))
})
test_that("single value arguments", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# enlarge spatial extent
terra::ext(sim_pu_raster) <- c(
0, nrow(sim_pu_raster) * 1000,
0, ncol(sim_pu_raster) * 1000
)
terra::crs(sim_pu_raster) <- terra::crs("epsg:3857")
terra::ext(sim_features) <- terra::ext(sim_pu_raster)
terra::crs(sim_features) <- terra::crs(sim_pu_raster)
# create problem
p0 <- problem(sim_pu_raster, sim_features)
# create problems
p1 <-
p0 %>%
add_auto_targets(
method = spec_duran_targets(
probability_target = rep(0.9, 5),
historical_area = rep(10000, 5),
area_units = "km2"
)
)
p2 <-
p0 %>%
add_auto_targets(
method = spec_duran_targets(
probability_target = rep(0.9, 1),
historical_area = rep(10000, 1),
area_units = "km2"
)
)
# run tests
expect_equal(p1$targets$output(p1), p2$targets$output(p2))
})
test_that("invalid inputs", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# enlarge spatial extent
terra::ext(sim_pu_raster) <- c(
0, nrow(sim_pu_raster) * 1000,
0, ncol(sim_pu_raster) * 1000
)
terra::crs(sim_pu_raster) <- terra::crs("epsg:3857")
terra::ext(sim_features) <- terra::ext(sim_pu_raster)
terra::crs(sim_features) <- terra::crs(sim_pu_raster)
# create problem
p <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective()
# run tests
## prob_target
expect_tidy_error(
add_auto_targets(
p,
method = spec_duran_targets(
probability_target = c(0.1, NA, 0.3, 0.4, 0.9),
historical_area = c(100, 300, 400, 500, 20),
area_units = "km2"
)
),
"missing"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_duran_targets(
probability_target = c(0.1, 0.3, 0.4, 0.9),
historical_area = c(100, 300, 400, 500, 20),
area_units = "km2"
)
),
"length"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_duran_targets(
probability_target = c(0.1, -0.2, 0.3, 0.4, 0.9),
historical_area = c(100, 300, 400, 500, 20),
area_units = "km2"
)
),
"1"
)
## historical_area
expect_tidy_error(
add_auto_targets(
p,
method = spec_duran_targets(
probability_target = c(0.1, 0.2, 0.3, 0.4, 0.9),
historical_area = c(100, NA, 400, 500, 20),
area_units = "km2"
)
),
"missing"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_duran_targets(
probability_target = c(0.1, 0.2, 0.3, 0.4, 0.9),
historical_area = c(100, 400, 500, 20),
area_units = "km2"
)
),
"length"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_duran_targets(
probability_target = c(0.1, 0.2, 0.3, 0.4, 0.9),
historical_area = c(100, -3000, 400, 500, 20),
area_units = "km2"
)
),
"negative"
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.