Nothing
## high-level convenience interface to mob()
raschtree <- function(formula, data, na.action,
reltol = 1e-10, deriv = c("sum", "diff", "numeric"), maxit = 100L, ...)
{
## keep call
cl <- match.call(expand.dots = TRUE)
## use dots for setting up mob_control
control <- mob_control(...)
control$ytype <- "matrix"
## control options for raschfit
raschcontrol <- list(reltol = reltol, deriv = deriv, maxit = maxit)
## call mob
m <- match.call(expand.dots = FALSE)
m$fit <- raschfit
m$control <- control
for(n in names(raschcontrol)) if(!is.null(raschcontrol[[n]])) m[[n]] <- raschcontrol[[n]]
if("..." %in% names(m)) m[["..."]] <- NULL
m[[1L]] <- as.call(quote(partykit::mob))
rval <- eval(m, parent.frame())
## extend class and keep original call
rval$info$call <- cl
class(rval) <- c("raschtree", class(rval))
return(rval)
}
## glue code for calling raschmodel()
raschfit <- function(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...,
estfun = FALSE, object = FALSE)
{
if(!(is.null(x) || NCOL(x) == 0L)) warning("x not used")
if(!is.null(offset)) warning("offset not used")
rval <- raschmodel(y, weights = weights, start = start, ..., hessian = object | estfun)
rval <- list(
coefficients = rval$coefficients,
objfun = -rval$loglik,
estfun = if(estfun) estfun.raschmodel(rval) else NULL,
object = if(object) rval else NULL
)
return(rval)
}
## methods
print.raschtree <- function(x,
title = "Rasch tree", objfun = "negative log-likelihood", ...)
{
partykit::print.modelparty(x, title = title, objfun = objfun, ...)
}
predict.raschtree <-
predict.rstree <-
predict.pctree <- function(object, newdata = NULL,
type = c("probability", "cumprobability", "mode", "median", "mean",
"category-information", "item-information", "test-information", "node"),
personpar = 0, ...)
{
## type of prediction
type <- match.arg(type)
## nodes can be handled directly
if(type == "node") return(partykit::predict.modelparty(object, newdata = newdata, type = "node", ...))
## get default newdata otherwise
if(is.null(newdata)) newdata <- model.frame(object)
## predictions inherited from the basic *model object, evaluated at one person parameter
partykit::predict.modelparty(object, newdata = newdata,
type = function(obj) predict(obj, newdata = personpar[1L], type = type, ...))
}
apply_to_models <- function(object, node = NULL, FUN = NULL, drop = FALSE, ...) {
if(is.null(node)) node <- nodeids(object, terminal = FALSE)
if(is.null(FUN)) FUN <- function(object, ...) object
rval <- if("object" %in% object$info$control$terminal) {
nodeapply(object, node, function(n) FUN(info_node(n)$object))
} else {
lapply(refit.modelparty(object, node, drop = FALSE), FUN)
}
names(rval) <- node
if(drop & length(node) == 1L) rval <- rval[[1L]]
return(rval)
}
itempar.raschtree <-
itempar.rstree <-
itempar.pctree <-
itempar.bttree <- function(object, node = NULL, ...)
{
ids <- if(is.null(node)) nodeids(object, terminal = TRUE) else node
myitempar <- function(obj) coef(itempar(obj, ...))
if(length(ids) == 1L) {
apply_to_models(object, node = ids, FUN = myitempar, drop = TRUE)
} else {
do.call("rbind", apply_to_models(object, node = ids, FUN = myitempar, drop = FALSE))
}
}
plot.raschtree <- function(x, type = c("profile", "regions"), terminal_panel = NULL,
tp_args = list(...), tnex = 2L, drop_terminal = TRUE, ...)
{
if(!is.null(terminal_panel)) {
if(!missing(type)) warning("only one of 'type' and 'terminal_panel' should be specified")
} else {
terminal_panel <- switch(match.arg(type),
"regions" = node_regionplot,
"profile" = node_profileplot)
}
partykit::plot.modelparty(x, terminal_panel = terminal_panel,
tp_args = tp_args, tnex = tnex, drop_terminal = drop_terminal, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.