Nothing
context("calFastTuneLearnFast")
test_that("calFastTuneLearnFast", {
set.seed(41334)
par(mfrow = c(2, 2))
par(mar = c(5.1, 4.1, 0.1, 0.1))
for(ii in 1:1){ #### !!!!!!!!!! set to 1:4 to test also elfss
if(ii == 1){
### 1) 4D Gaussian example
dat <- gamSim(1, n=1000, dist="normal", scale=2, verbose=FALSE)
form <- y ~ s(x0)+s(x1)+s(x2)+s(x3)
qus <- c(0.01, 0.5, 0.99)
}
if(ii == 2){
### 2) 1D Gamma esample
n <- 1000
x <- seq(-4, 4, length.out = n)
X <- cbind(1, x, x^2)
beta <- c(0, 1, 1)
sigma <- 1
# sigma = .1+(x+4)*.5 ## sigma grows with x
f <- drop(X %*% beta)
tauSim <- 0.9
y <- f + rgamma(n, 3, 1)# rlf(n, 0, tau = tauSim, sig = sigma, lam)# # # rnorm(n, 0, sigma)
form <- y ~ s(x, k = 30)
dat <- data.frame(cbind(y, x))
names(dat) <- c("y", "x")
qus <- c(0.1, 0.95, 0.99)
}
if( ii == 3 ){
### 3) 3D Gamma esample
n <- 1000
x <- runif(n, -4, 4); z <- runif(n, -8, 8); w <- runif(n, -4, 4)
X <- cbind(1, x, x^2, z, sin(z), w^3, cos(w))
beta <- c(0, 1, 1, -1, 2, 0.1, 3)
sigma <- 0.5
f <- drop(X %*% beta)
dat <- f + rgamma(n, 3, 1)
dat <- data.frame(cbind(dat, x, z, w))
names(dat) <- c("y", "x", "z", "w")
bs <- "cr"
formF <- y~s(x, k = 30, bs = bs) + s(z, k = 30, bs = bs) + s(w, k = 30, bs = bs)
qus <- c(0.01, 0.5, 0.95)
}
if(ii == 4){
### 1) 4D Gaussian example BUT gamlss version
dat <- gamSim(1, n=1000, dist="normal", scale=2, verbose=FALSE)
form <- list(y ~ s(x0)+s(x1)+s(x2)+s(x3), ~ s(x0))
qus <- c(0.01, 0.5, 0.99)
}
# Checking that the loss evaluated by tuneLearn is close to that evaluated
# by tuneLearnFast. They can't be exactly the same, because the order with which
# the losses are evaluated are different (hence different initializations)
expect_error({
calibr <- list("fast" = list(), "slow" = list())
calibr[["fast"]] <- tuneLearnFast(form,
data = dat,
qu = qus,
control = list("progress" = FALSE))
calibr[["slow"]] <- lapply(1:length(qus),
function(.kk){
tuneLearn(form,
data = dat,
qu = qus[.kk],
lsig = calibr[["fast"]]$store[[.kk]][1, ],
control = list("progress" = FALSE))})
}, NA)
x <- lapply(calibr[["fast"]]$store, function(.inp) .inp[1, ])
y1 <- lapply(calibr[["fast"]]$store, function(.inp) log(.inp[2, ]))
y2 <- sapply(calibr[["slow"]], function(.inp) log(.inp$loss))
plot(x[[1]], y1[[1]], col = 1, xlim = range(do.call("c", x)), ylim = range(c(do.call("c", y1), do.call("c", y2))),
ylab = "log-loss", xlab = expression(log(sigma)))
points(x[[2]], y1[[2]], col = 2)
points(x[[3]], y1[[3]], col = 3)
lines(sort(x[[1]]), y2[[1]], col = 1)
lines(sort(x[[2]]), y2[[2]], col = 2)
lines(sort(x[[3]]), y2[[3]], col = 3)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.