Nothing
context("qgam_discrete")
test_that("qgam_discrete", {
set.seed(414)
par(mfrow = c(2, 2))
par(mar = c(5.1, 4.1, 1.1, 0.1))
for(ii in 1:1){ #### !!!!!!!!!! set to 1:4 to test also elfss
if(ii == 1){
### 1) 4D Gaussian example
dat <- gamSim(1, n=2000, dist="normal", scale=2, verbose=FALSE)
form <- y ~ s(x0)+s(x1)+s(x2)+s(x3)
lsig <- seq(-5.5, 4, length.out = 15)
qus <- c(0.01, 0.5, 0.99)
}
if(ii == 2){
### 2) 1D Gamma esample
n <- 2000
x <- seq(-4, 4, length.out = n)
X <- cbind(1, x, x^2)
beta <- c(0, 1, 1)
sigma <- 1
# sigma = .1+(x+4)*.5 ## sigma grows with x
f <- drop(X %*% beta)
tauSim <- 0.9
y <- f + rgamma(n, 3, 1)# rlf(n, 0, tau = tauSim, sig = sigma, lam)# # # rnorm(n, 0, sigma)
form <- y ~ s(x, k = 30)
dat <- data.frame(cbind(y, x))
names(dat) <- c("y", "x")
qus <- c(0.01, 0.5, 0.95)
}
if( ii == 3 ){
### 3) 3D Gamma esample
n <- 2000
x <- runif(n, -4, 4); z <- runif(n, -8, 8); w <- runif(n, -4, 4)
X <- cbind(1, x, x^2, z, sin(z), w^3, cos(w))
beta <- c(0, 1, 1, -1, 2, 0.1, 3)
sigma <- 0.5
f <- drop(X %*% beta)
dat <- f + rgamma(n, 3, 1)
dat <- data.frame(cbind(dat, x, z, w))
names(dat) <- c("y", "x", "z", "w")
bs <- "cr"
formF <- y~s(x, k = 30, bs = bs) + s(z, k = 30, bs = bs) + s(w, k = 30, bs = bs)
qus <- c(0.01, 0.5, 0.95)
}
if(ii == 4){
### 1) 4D Gaussian example BUT gamlss version
dat <- gamSim(1, n=2000, dist="normal", scale=2, verbose=FALSE)
form <- list(y ~ s(x0)+s(x1)+s(x2)+s(x3), ~ s(x0))
qus <- c(0.01, 0.5, 0.99)
}
expect_error({
calibr <- list("standard" = list(), "discrete" = list())
for(met in c("standard", "discrete")){
calibr[[met]] <- lapply(qus,
function(.q){
qgam(form,
data = dat,
discrete = (met == "discrete"),
qu = .q,
control = list("progress" = "none"))})
}
} , NA)
tmp <- cbind(sapply(calibr[["standard"]], "[[", "fitted.values"), sapply(calibr[["discrete"]], "[[", "fitted.values"))
ylim <- range(tmp)
plot(tmp[ , 1], tmp[ , 3+1], main = paste0("[",ii,"] qgam vs qgam discrete"), xlab = "standard fit", ylab = "discrete fit")
abline(0, 1, col = 2)
for(kk in 2:3){
lines(tmp[ , 1], tmp[ , 3+1], col = kk)
}
legend("topleft", col = 1:3, lty = 1, legend = qus)
expect_error({
withCallingHandlers(
{
calibr <- list("standard" = list(), "discrete" = list())
for(met in c("standard", "discrete")){
calibr[[met]] <- mqgam(form,
data = dat,
discrete = (met == "discrete"),
qu = qus,
control = list("progress" = "none"))
}
},
warning = function(w) {
if (endsWith(conditionMessage(w), "algorithm did not converge") || endsWith(conditionMessage(w), "check results carefully"))
invokeRestart("muffleWarning")
})
}, NA)
tmp <- cbind(sapply(calibr[["standard"]]$fit, "[[", "fitted.values"), sapply(calibr[["discrete"]]$fit, "[[", "fitted.values"))
ylim <- range(tmp)
plot(tmp[ , 1], tmp[ , 3+1], main = paste0("[",ii,"] mqgam vs mqgam discrete"), xlab = "standard fit", ylab = "discrete fit")
abline(0, 1, col = 2)
for(kk in 2:3){
lines(tmp[ , 1], tmp[ , 3+1], col = kk)
}
legend("topleft", col = 1:3, lty = 1, legend = qus)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.