facDesign: facDesign

Description Usage Arguments Details Value Note Author(s) See Also Examples

View source: R/COM_P.R

Description

Generates a 2^k full factorial design.

Usage

1
facDesign(k = 3, p = 0, replicates = 1, blocks = 1, centerCube = 0)

Arguments

k

numeric value giving the number of factors. By default k is set to ‘3’.

p

numeric integer between ‘0’ and ‘7’. p is giving the number of additional factors in the response surface design by aliasing effects.
For further information see fracDesign and fracChoose.
By default p is set to ‘0’.

replicates

numeric value giving the number of replicates per factor combination. By default replicates is set to ‘1’.

blocks

numeric value giving the number of blocks. By default blocks is set to ‘1’. Blocking is only performed for k greater 2.

centerCube

numeric value giving the number of centerpoints within the 2^k design. By default centerCube is set to ‘0’.

Details

facDesign generates 2^k full factorial designs.

Value

The function facDesign returns an object of class facDesign.

Note

For an example in context which shows the usage of the function facDesign please read the vignette for the package qualityTools at http://www.r-qualitytools.org/html/Improve.html.

Author(s)

Thomas Roth [email protected]

See Also

fracDesign
fracChoose
rsmDesign
pbDesign
taguchiDesign
http://www.r-qualitytools.org/html/Improve.html

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
#returns a 2^3 full factorial design
vp.full = facDesign(k = 3)        
#generate some random response                        
response(vp.full) = rnorm(2^3) 
#summary of the full factorial design (especially no defining relation)                            
summary(vp.full)                                           

#------------

#returns a full factorial design with 3 replications per factor combination 
#and 4 center points
vp.rep = facDesign(k = 2, replicates = 3, centerCube = 4)  
#set names
names(vp.rep) = c("Name 1", "Name 2") 
#set units                     
units(vp.rep) = c("min", "F")         
#set low and high factor values                     
lows(vp.rep) = c(20, 40, 60)                               
highs(vp.rep) = c(40, 60, 80)  
#summary of the replicated full factorial Design        
summary(vp.rep)                                                

Example output

Loading required package: Rsolnp
Loading required package: MASS

Attaching package: 'qualityTools'

The following object is masked from 'package:stats':

    sigma

Warning messages:
1: In `[<-`(`*tmp*`, i, value = <S4 object of class "doeFactor">) :
  implicit list embedding of S4 objects is deprecated
2: In `[<-`(`*tmp*`, i, value = <S4 object of class "doeFactor">) :
  implicit list embedding of S4 objects is deprecated
3: In `[<-`(`*tmp*`, i, value = <S4 object of class "doeFactor">) :
  implicit list embedding of S4 objects is deprecated
Information about the factors:

           A       B       C
low       -1      -1      -1
high       1       1       1
name                        
unit                        
type numeric numeric numeric
-----------
  StandOrder RunOrder Block  A  B  C  rnorm.2.3.
4          4        1     1  1  1 -1 -0.91149314
3          3        2     1 -1  1 -1 -0.64604795
2          2        3     1  1 -1 -1 -1.21969321
5          5        4     1 -1 -1  1  0.29408749
6          6        5     1  1 -1  1 -0.53747162
7          7        6     1 -1  1  1 -0.04947574
8          8        7     1  1  1  1 -0.27433356
1          1        8     1 -1 -1 -1  0.24014825
Warning messages:
1: In `[<-`(`*tmp*`, i, value = new("doeFactor")) :
  implicit list embedding of S4 objects is deprecated
2: In `[<-`(`*tmp*`, i, value = new("doeFactor")) :
  implicit list embedding of S4 objects is deprecated
Information about the factors:

           A       B
low       20      40
high      40      60
name  Name 1  Name 2
unit     min       F
type numeric numeric
-----------
   StandOrd RunOrder Block  A  B  y
4         4        1     1  1  1 NA
9         9        2     1 -1 -1 NA
3         3        3     1 -1  1 NA
14       14        4     1  0  0 NA
10       10        5     1  1 -1 NA
2         2        6     1  1 -1 NA
12       12        7     1  1  1 NA
11       11        8     1 -1  1 NA
15       15        9     1  0  0 NA
5         5       10     1 -1 -1 NA
16       16       11     1  0  0 NA
8         8       12     1  1  1 NA
13       13       13     1  0  0 NA
6         6       14     1  1 -1 NA
1         1       15     1 -1 -1 NA
7         7       16     1 -1  1 NA

qualityTools documentation built on May 30, 2017, 1:43 a.m.