| Qstat.reg.sb | R Documentation | 
Stationary Bootstrap procedure to generate critical values for both Box-Pierece and Ljung-Box type Q-statistics
Qstat.reg.sb(DATA1, DATA2, vecA, Psize, gamma, Bsize, sigLev)
| DATA1 | The original data set (1) | 
| DATA2 | The original data set (2) | 
| vecA | A pair of two probabity values at which sample quantiles are estimated | 
| Psize | The maximum number of lags | 
| gamma | A parameter for the stationary bootstrap | 
| Bsize | The number of repetition of bootstrap | 
| sigLev | The statistical significance level | 
This function returns critical values for for both Box-Pierece and Ljung-Box type Q-statistics through the statioanry bootstrap proposed by Politis and Romano (1994).
The bootstrap critical values
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
Politis, Dimitris N., and Joseph P. Romano. (1994). "The stationary bootstrap." Journal of the American Statistical Association 89.428, pp.1303-1313.
data(sys.risk) 
## sample size
T = nrow(sys.risk)
## matrix for quantile regressions
## - 1st column: dependent variables
## - the rest:   regressors or predictors 
D1 = cbind(sys.risk[2:T,"Market"], sys.risk[1:(T-1),"Market"])
D2 = cbind(sys.risk[2:T,"JPM"], sys.risk[1:(T-1),"JPM"])
## probability levels
vecA = c(0.1, 0.2)
## setup for stationary bootstrap
gamma  = 1/10 ## bootstrap parameter depending on data
Bsize  = 5    ## small size, 5, for test 
sigLev = 0.05 ## significance level
## Q statistics with lags from 1 to 5, after quantile regression 
Qstat.reg.sb(D1, D2, vecA, 5, gamma, Bsize, sigLev)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.