crossqreg.sb | R Documentation |
Returns critical values for the cross-quantilogram, based on the stationary bootstrap.
crossqreg.sb(DATA1, DATA2, vecA, k, gamma, Bsize, sigLev)
DATA1 |
The original data matrix (T x p1) |
DATA2 |
The original data matrix (T x p2) |
vecA |
A pair of two probability values at which sample quantiles are estimated |
k |
A lag order |
gamma |
A parameter for the stationary bootstrap |
Bsize |
The number of repetition of bootstrap |
sigLev |
The statistical significance level |
This function generates critical values for for the cross-quantilogram, using the stationary bootstrap in Politis and Romano (1994).
The boostrap critical values
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
Politis, Dimitris N., and Joseph P. Romano. "The stationary bootstrap." Journal of the American Statistical Association 89.428 (1994): 1303-1313.
data(sys.risk)
## sample size
T = nrow(sys.risk)
## matrix for quantile regressions
## - 1st column: dependent variables
## - the rest: regressors or predictors
D1 = cbind(sys.risk[2:T,"Market"], sys.risk[1:(T-1),"Market"])
D2 = cbind(sys.risk[2:T,"JPM"], sys.risk[1:(T-1),"JPM"])
## probability levels
vecA = c(0.1, 0.2)
## setup for stationary bootstrap
gamma = 1/10 ## bootstrap parameter depending on data
Bsize = 5 ## small size 10 for test
sigLev = 0.05 ## significance level
## cross-quantilogram with the lag of 5, after quantile regression
crossqreg.sb(D1, D2, vecA, 5, gamma, Bsize, sigLev)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.