crossqreg | R Documentation |
Returns the cross-quantilogram
crossqreg(DATA1, DATA2, vecA, k)
DATA1 |
An input matrix (T x p1) |
DATA2 |
An input matrix (T x p2) |
vecA |
A pair of two probability values at which sample quantiles are estimated |
k |
A lag order (integer) |
This function obtains the cross-quantilogram at the k lag order.
Cross-Quantilogram
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
Koenker, R., and Bassett Jr, G. (1978). "Regression quantiles." Econometrica, 46(1), 33-50.
## data source
data(sys.risk)
## sample size
T = nrow(sys.risk)
## matrix for quantile regressions
## - 1st column: dependent variables
## - the rest: regressors or predictors
D1 = cbind(sys.risk[2:T,"Market"], sys.risk[1:(T-1),"Market"])
D2 = cbind(sys.risk[2:T,"JPM"], sys.risk[1:(T-1),"JPM"])
## probability levels
vecA = c(0.1, 0.2)
## cross-quantilogram with the lag of 5, after quantile regression
crossqreg(D1, D2, vecA, 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.