crossq.sb | R Documentation |
Returns critical values for the cross-quantilogram, based on the stationary bootstrap.
crossq.sb(DATA, vecA, k, gamma, Bsize, sigLev)
DATA |
An input matrix of dimensions T x 2, where T is the number of observations. Column 1 contains the first variable and Column 2 contains the second variable. This function will apply a k-period lag to the second variable during computation. |
vecA |
A pair of two probability values at which sample quantiles are estimated |
k |
A lag order |
gamma |
A parameter for the stationary bootstrap |
Bsize |
The number of repetition of bootstrap |
sigLev |
The statistical significance level |
This function generates critical values for for the cross-quantilogram, using the stationary bootstrap in Politis and Romano (1994).
The boostrap critical values
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
Politis, Dimitris N., and Joseph P. Romano. "The stationary bootstrap." Journal of the American Statistical Association 89.428 (1994): 1303-1313.
data("sys.risk") ## data source
D = sys.risk[,c("Market", "JPM")] ## data: 2 variables
# probability levels for the 2 variables
vecA = c(0.1, 0.5)
## setup for stationary bootstrap
gamma = 1/10 ## bootstrap parameter depending on data
Bsize = 5 ## small size, 5, for test
sigLev = 0.05 ## significance level
## cross-quantilogram with the lag of 5
crossq.sb(D, vecA, 5, gamma, Bsize, sigLev)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.