View source: R/crossq.heatmap.R
crossq.heatmap | R Documentation |
This function creates a customizable heatmap visualization of the cross-quantilogram matrix and returns a list containing the plot and a data frame of cross-quantilogram values with critical values. The heatmap uses 0 values if the test of no correlation cannot be rejected, and it uses cross-quantilogram values otherwise. The critical values are obtained by stationary bootstrap.
crossq.heatmap(
DATA,
k,
vec.q,
Bsize,
sigLev = 0.05,
var1_name = NULL,
var2_name = NULL,
title = "Cross-Quantilogram Heatmap",
subtitle = NULL,
colors = c("blue", "lightblue", "white", "pink", "red"),
color_values = c(-1, -0.15, 0, 0.15, 1),
tile_border_color = "black",
tile_border_width = 0.5,
x_angle = 90,
x_lab = NULL,
y_lab = NULL,
legend_title = "Cross-Q"
)
DATA |
An input matrix of dimensions T x 2, where T is the number of observations. Column 1 contains the first variable and Column 2 contains the second variable. This function will apply a k-period lag to the second variable during computation. |
k |
An integer representing the lag. |
vec.q |
A numeric vector of quantiles. |
Bsize |
Bootstrap sample size for stationary bootstrap. |
sigLev |
Significance level for statistical test. Default is 0.05 (5% significance level). |
var1_name |
Name of the first variable (predicted variable). If NULL, defaults to "Variable 1". |
var2_name |
Name of the second variable (predicting variable). If NULL, defaults to "Variable 2". |
title |
Plot title. Default is "Cross-Quantilogram Heatmap". |
subtitle |
Plot subtitle. Default is NULL (no subtitle). |
colors |
A vector of colors for the heatmap. Default is c("blue", "lightblue", "white", "pink", "red"). |
color_values |
A vector of values for color scaling. Default is c(-1, -0.15, 0, 0.15, 1). |
tile_border_color |
Color for tile borders. Default is "black". |
tile_border_width |
Width for tile borders. Default is 0.5. |
x_angle |
Angle for x-axis labels. Default is 90. |
x_lab |
X-axis label. If NULL (default), it's automatically generated. |
y_lab |
Y-axis label. If NULL (default), it's automatically generated. |
legend_title |
Title for the legend. Default is "Cross-Q". |
A list containing two elements:
plot |
A ggplot object representing the cross-quantilogram heatmap. |
df.res |
A data frame containing cross-quantilogram values and critical values. It includes the following columns:
|
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
## Not run:
## data source
data("sys.risk")
## two variables data: T x 2
DATA = sys.risk[,c("JPM", "Market")]
## setup and estimation
k = 1 ## lag order
vec.q = seq(0.05, 0.95, 0.05) ## a list of quantiles
B.size = 200 ## Repetition of bootstrap
res = crossq.heatmap(DATA, k, vec.q, B.size)
## result
print(res$plot)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.