crossq.plot | R Documentation |
This function creates a plot of the cross-quantilogram with confidence intervals. It computes the cross-quantilogram and its confidence intervals using stationary bootstrap, then creates a ggplot visualization of the results.
crossq.plot(
DATA,
vecA,
Kmax,
Bsize,
sigLev = 0.05,
vec.lag,
vec.CQ,
mat.CI,
y.min = -1,
y.max = 1,
ribbon_color = "gray",
ribbon_alpha = 0.8,
bar_color = "black",
bar_width = 0.2,
title = "",
subtitle = NULL
)
DATA |
A matrix of dimensions T x 2, where T is the number of observations. Column 1 contains the first variable and Column 2 contains the second variable. |
vecA |
A numeric vector of quantiles for the first variable. |
Kmax |
An integer representing the maximum lag to compute. |
Bsize |
Bootstrap sample size for stationary bootstrap. |
sigLev |
Significance level for confidence intervals. Default is 0.05 (95% confidence level). |
vec.lag |
A vector of lag values (integer values). Not used in computation, only for plotting. |
vec.CQ |
A numeric vector of cross-quantilogram values. Not used in computation, only for plotting. |
mat.CI |
A matrix with two columns representing the lower and upper bounds of the confidence interval. Not used in computation, only for plotting. |
y.min |
The minimum y-axis value. Default is -1. |
y.max |
The maximum y-axis value. Default is 1. |
ribbon_color |
Color for the confidence interval ribbon. Default is "gray". |
ribbon_alpha |
Alpha (transparency) for the confidence interval ribbon. Default is 0.8. |
bar_color |
Color for the quantilogram bars. Default is "black". |
bar_width |
Width of the quantilogram bars. Default is 0.2. |
title |
Plot title. Default is an empty string. |
subtitle |
Plot subtitle. Default is NULL (no subtitle). |
A list containing two elements:
plot |
A ggplot object representing the cross-quantilogram plot over lags. |
df.res |
A data frame containing cross-quantilogram values and critical values. It includes the following columns:
|
A list containing two elements:
plot |
A ggplot object representing the cross-quantilogram plot. |
df.res |
A data frame containing lag values, cross-quantilogram values, and confidence intervals. |
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
## Not run:
data("sys.risk")
DATA = sys.risk[,c("JPM", "Market")]
vecA = 0.05
Kmax = 20
Bsize = 200
result = crossq.plot(DATA, vecA, Kmax, Bsize)
print(result$plot)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.