Nothing
fsiStarter <- function(x, db, grpBy_quo = NULL, scaleBy_quo = NULL, polys = NULL,
returnSpatial = FALSE, bySpecies = FALSE, bySizeClass = FALSE,
landType = 'forest', treeType = 'live', method = 'TI',
lambda = .5, treeDomain = NULL, areaDomain = NULL,
totals = FALSE, byPlot = FALSE, useSeries = FALSE,
mostRecent = FALSE, nCores = 1, remote, mr){
# Read required data, prep the database -------------------------------------
reqTables <- c('PLOT', 'TREE', 'COND', 'POP_PLOT_STRATUM_ASSGN',
'POP_ESTN_UNIT', 'POP_EVAL', 'POP_STRATUM', 'POP_EVAL_TYP',
'POP_EVAL_GRP', 'PLOTGEOM')
# If remote, read in state by state. Otherwise, drop all unnecessary tables
db <- readRemoteHelper(x, db, remote, reqTables, nCores)
# Handle TX issues: we only keep inventory years that are present in
# BOTH EAST AND WEST TX
db <- handleTX(db)
# Check some of the inputs ----------------------------------------------
# polys -----------------------------
if (!is.null(polys) &
first(class(polys)) %in%
c('sf', 'SpatialPolygons', 'SpatialPolygonsDataFrame') == FALSE){
stop('polys must be spatial polygons object of class sp or sf. ')
}
# landType --------------------------
if (landType %in% c('timber', 'forest') == FALSE){
stop('landType must be one of: "forest" or "timber".')
}
# treeType --------------------------
if (treeType %in% c('live', 'dead', 'gs', 'all') == FALSE){
stop('treeType must be one of: "live", "dead", "gs", or "all".')
}
# db required tables ----------------
if (any(reqTables %in% names(db) == FALSE)){
missT <- reqTables[reqTables %in% names(db) == FALSE]
stop(paste('Tables', paste (as.character(missT), collapse = ', '),
'not found in object db.'))
}
# method ----------------------------
if (str_to_upper(method) %in% c('TI', 'SMA', 'LMA', 'EMA', 'ANNUAL') == FALSE) {
warning(paste('Method', method,
'unknown. Defaulting to Temporally Indifferent (TI).'))
}
# Other basic variable prep ---------------------------------------------
# Join PLOT with PLOTGEOM to allow plot-level geographic attributes to be used
# in grpBy statements
db$PLOTGEOM <- db$PLOTGEOM %>%
dplyr::select(-STATECD, -INVYR, -UNITCD, -COUNTYCD, -PLOT, -LAT, -LON,
-dplyr::starts_with('CREATED'), -dplyr::starts_with('MODIFIED'))
db$PLOT <- db$PLOT %>%
dplyr::left_join(db$PLOTGEOM, by = 'CN')
# Get a plot CN and a new pltID that gives a unique ID to each plot
# PLT_CN is UNITCD, STATECD, COUNTYCD, PLOT, and INVYR
db$PLOT <- db$PLOT %>%
mutate(PLT_CN = CN,
pltID = paste(UNITCD, STATECD, COUNTYCD, PLOT, sep = '_'))
db$TREE <- db$TREE %>%
mutate(TRE_CN = CN)
# Convert grpBy to character
grpBy <- grpByToChar(db, grpBy_quo)
# Convert scaleBy to character
scaleBy <- grpByToChar(db[names(db) %in% 'TREE' == FALSE], scaleBy_quo)
# Unique plot ID through time (pltID)
if (byPlot) {
grpBy <- c('pltID', grpBy)
}
# Intersect plots with polygons if polygons are given
if (!is.null(polys)) {
# Add shapefile names to grpBy
# Determine the name of the sf column. This assumes the user has not
# manually changed the "sf_column" attribute. By default, this is the
# same as the sf column. This is needed, because there is no single
# name for the sf column. It is usually geom or geometry, but that
# is not always the case.
sfCol <- attr(polys, 'sf_column')
grpBy <- c(grpBy, names(polys)[names(polys) != sfCol])
# Do the intersection
db <- arealSumPrep2(db, grpBy, polys, nCores, remote)
# If there's nothing there, skip the state
if (is.null(db)) return('no plots in polys')
}
# Update grpBy if returning spatial points.
if (byPlot & returnSpatial) {
grpBy <- c(grpBy, 'LON', 'LAT')
}
# Build a domain indicator for each observation (1 or 0) ----------------
# Land type
db$COND$landD <- landTypeDomain(landType, db$COND$COND_STATUS_CD,
db$COND$SITECLCD, db$COND$RESERVCD)
# Tree type
db$TREE$typeD <- treeTypeDomain(treeType, db$TREE$STATUSCD,
db$TREE$DIA, db$TREE$TREECLCD)
# Spatial boundary
if (!is.null(polys)){
db$PLOT$sp <- ifelse(!is.na(db$PLOT$polyID), 1, 0)
} else {
db$PLOT$sp <- 1
}
# User defined domain indicator for area (ex. specific forest type)
db <- udAreaDomain(db, areaDomain)
# User defined domain indicator for tree (ex. trees > 20 ft tall)
db <- udTreeDomain(db, treeDomain)
# Handle population tables --------------------------------------------------
# We only want inventory/ population info from t2 plots, but we need the plot tree cond data
# for t1 and t2
remPlts <- db$PLOT %>%
select(PLT_CN, PREV_PLT_CN, DESIGNCD, REMPER, PLOT_STATUS_CD) %>%
# Has to have a remeasurement, be in the current sample, and of the national design
filter(!is.na(REMPER) & !is.na(PREV_PLT_CN) & PLOT_STATUS_CD != 3 & DESIGNCD %in% c(1, 501:505)) %>%
left_join(select(db$PLOT, PLT_CN, DESIGNCD, PLOT_STATUS_CD), by = c('PREV_PLT_CN' = 'PLT_CN'), suffix = c('', '.prev')) %>%
# Past remasurement must be in the previous sample and of national design
filter(PLOT_STATUS_CD.prev != 3 & DESIGNCD.prev %in% c(1, 501:505))
# Filtering out all inventories that are not relevant to the current estimation
# type. If using estimator other than TI, handle the differences in P2POINTCNT
# and in assigning YEAR column (YEAR = END_INVYR if method = 'TI')
# TODO: test this to see if handlePops works instead of handlePops_old.
# TODO: left off here.
pops <- handlePops_old(db, evalType = c('EXPVOL'), method, mr, pltList = remPlts$PLT_CN)
## A lot of states do their stratification in such a way that makes it impossible
## to estimate variance of annual panels w/ post-stratified estimator. That is,
## the number of plots within a panel within an stratum is less than 2. When
## this happens, merge strata so that all have at least two obs
if (str_to_upper(method) != 'TI') {
pops <- mergeSmallStrata(db, pops)
}
## If we opt to use multiple remeasurements to estimate change, we can't use
## clipFIA to merge most recent inventories. Instead, we'll have to subset the
## most recent inventories in the population tables, and combine at the end
if (useSeries & mostRecent & str_to_upper(method) != 'ANNUAL') {
## Pull the most recent YEAR from each state - already filtered EVALTYP above
pops <- pops %>%
group_by(STATECD) %>%
filter(YEAR == max(YEAR, na.rm = TRUE)) %>%
ungroup()
## Trick rFIA into doing the merge, even though db wasn't clipped
mr = TRUE
}
## Canned groups -------------------------------------------------------------
## Add species to groups
if (bySpecies) {
db$TREE <- db$TREE %>%
left_join(select(intData$REF_SPECIES_2018,
c('SPCD','COMMON_NAME', 'GENUS', 'SPECIES')), by = 'SPCD') %>%
mutate(SCIENTIFIC_NAME = paste(GENUS, SPECIES, sep = ' ')) %>%
mutate_if(is.factor,
as.character)
grpBy <- c(grpBy, 'SPCD', 'COMMON_NAME', 'SCIENTIFIC_NAME')
}
## Break into size classes
if (bySizeClass){
grpBy <- c(grpBy, 'sizeClass')
db$TREE$sizeClass <- makeClasses(db$TREE$DIA, interval = 2, numLabs = TRUE)
db$TREE <- db$TREE[!is.na(db$TREE$sizeClass),]
}
## Slim down the database for we hand it off to the estimators ---------------
## Reduces memory requirements and speeds up processing ----------------------
## Only the necessary plots for EVAL of interest
remPltList <- unique(c(remPlts$PLT_CN, remPlts$PREV_PLT_CN))
db$PLOT <- filter(db$PLOT, PLT_CN %in% remPltList)
db$COND <- filter(db$COND, PLT_CN %in% remPltList)
db$TREE <- filter(db$TREE, PLT_CN %in% remPltList)
## Tree basal area per acre
db$TREE <- db$TREE %>%
mutate(BAA = basalArea(DIA) * TPA_UNADJ)
## Which grpByNames are in which table? Helps us subset below
grpP <- names(db$PLOT)[names(db$PLOT) %in% c(grpBy, scaleBy)]
grpC <- names(db$COND)[names(db$COND) %in% c(grpBy, scaleBy) & names(db$COND) %in% grpP == FALSE]
grpT <- names(db$TREE)[names(db$TREE) %in% c(grpBy, scaleBy) & names(db$TREE) %in% c(grpP, grpC) == FALSE]
### Only joining tables necessary to produce plot level estimates, adjusted for non-response
db$PLOT <- select(db$PLOT, c('PLT_CN', pltID, 'REMPER', 'DESIGNCD', 'STATECD', 'MACRO_BREAKPOINT_DIA', 'INVYR',
'MEASYEAR', 'MEASMON', 'MEASDAY', 'PLOT_STATUS_CD', PREV_PLT_CN, all_of(grpP), 'sp'))
db$COND <- select(db$COND, c('PLT_CN', 'CONDPROP_UNADJ', 'PROP_BASIS', 'COND_STATUS_CD', 'CONDID', all_of(grpC), 'aD', 'landD',
DSTRBCD1, DSTRBCD2, DSTRBCD3, TRTCD1, TRTCD2, TRTCD3))
db$TREE <- select(db$TREE, c('PLT_CN', 'TRE_CN', 'CONDID', 'DIA', 'TPA_UNADJ', 'BAA', 'SUBP', 'TREE', all_of(grpT), 'tD', 'typeD',
PREVCOND, PREV_TRE_CN, STATUSCD, SPCD))
## Compute plot-level summaries ----------------------------------------------
## An iterator for plot-level summaries
plts <- split(db$PLOT, as.factor(paste(db$PLOT$COUNTYCD, db$PLOT$STATECD, sep = '_')))
suppressWarnings({
## Compute estimates in parallel -- Clusters in windows, forking otherwise
if (Sys.info()['sysname'] == 'Windows'){
cl <- makeCluster(nCores)
clusterEvalQ(cl, {
library(dplyr)
library(stringr)
library(rFIA)
library(tidyr)
})
out <- parLapply(cl, X = names(plts), fun = fsiHelper1, plts,
db[names(db) %in% c('COND', 'TREE')],
grpBy, scaleBy, byPlot)
#stopCluster(cl) # Keep the cluster active for the next run
} else { # Unix systems
out <- mclapply(names(plts), FUN = fsiHelper1, plts,
db[names(db) %in% c('COND', 'TREE')],
grpBy, scaleBy, byPlot, mc.cores = nCores)
}
})
## back to dataframes
out <- unlist(out, recursive = FALSE)
t <- bind_rows(out[names(out) == 't'])
t1 <- bind_rows(out[names(out) == 't1'])
a <- bind_rows(out[names(out) == 'a'])
out <- list(t = t, t1 = t1, a = a, grpBy = grpBy, scaleBy = scaleBy,
pops = pops, mr = mr)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.