Nothing
gbt_plots <- c(
"None" = "none",
"Permutation Importance" = "vip",
"Prediction plots" = "pred_plot",
"Partial Dependence" = "pdp",
"Dashboard" = "dashboard"
)
## list of function arguments
gbt_args <- as.list(formals(gbt))
## list of function inputs selected by user
gbt_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
gbt_args$data_filter <- if (input$show_filter) input$data_filter else ""
gbt_args$arr <- if (input$show_filter) input$data_arrange else ""
gbt_args$rows <- if (input$show_filter) input$data_rows else ""
gbt_args$dataset <- input$dataset
for (i in r_drop(names(gbt_args))) {
gbt_args[[i]] <- input[[paste0("gbt_", i)]]
}
gbt_args
})
gbt_plot_args <- as.list(if (exists("plot.gbt")) {
formals(plot.gbt)
} else {
formals(radiant.model:::plot.gbt)
})
## list of function inputs selected by user
gbt_plot_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
for (i in names(gbt_plot_args)) {
gbt_plot_args[[i]] <- input[[paste0("gbt_", i)]]
}
gbt_plot_args
})
gbt_pred_args <- as.list(if (exists("predict.gbt")) {
formals(predict.gbt)
} else {
formals(radiant.model:::predict.gbt)
})
# list of function inputs selected by user
gbt_pred_inputs <- reactive({
# loop needed because reactive values don't allow single bracket indexing
for (i in names(gbt_pred_args)) {
gbt_pred_args[[i]] <- input[[paste0("gbt_", i)]]
}
gbt_pred_args$pred_cmd <- gbt_pred_args$pred_data <- ""
if (input$gbt_predict == "cmd") {
gbt_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$gbt_pred_cmd) %>%
gsub(";\\s+", ";", .) %>%
gsub("\"", "\'", .)
} else if (input$gbt_predict == "data") {
gbt_pred_args$pred_data <- input$gbt_pred_data
} else if (input$gbt_predict == "datacmd") {
gbt_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$gbt_pred_cmd) %>%
gsub(";\\s+", ";", .) %>%
gsub("\"", "\'", .)
gbt_pred_args$pred_data <- input$gbt_pred_data
}
gbt_pred_args
})
gbt_pred_plot_args <- as.list(if (exists("plot.model.predict")) {
formals(plot.model.predict)
} else {
formals(radiant.model:::plot.model.predict)
})
# list of function inputs selected by user
gbt_pred_plot_inputs <- reactive({
# loop needed because reactive values don't allow single bracket indexing
for (i in names(gbt_pred_plot_args)) {
gbt_pred_plot_args[[i]] <- input[[paste0("gbt_", i)]]
}
gbt_pred_plot_args
})
output$ui_gbt_rvar <- renderUI({
req(input$gbt_type)
withProgress(message = "Acquiring variable information", value = 1, {
if (input$gbt_type == "classification") {
vars <- two_level_vars()
} else {
isNum <- .get_class() %in% c("integer", "numeric", "ts")
vars <- varnames()[isNum]
}
})
init <- if (input$gbt_type == "classification") {
if (is.empty(input$logit_rvar)) isolate(input$gbt_rvar) else input$logit_rvar
} else {
if (is.empty(input$reg_rvar)) isolate(input$gbt_rvar) else input$reg_rvar
}
selectInput(
inputId = "gbt_rvar",
label = "Response variable:",
choices = vars,
selected = state_single("gbt_rvar", vars, init),
multiple = FALSE
)
})
output$ui_gbt_lev <- renderUI({
req(input$gbt_type == "classification")
req(available(input$gbt_rvar))
levs <- .get_data()[[input$gbt_rvar]] %>%
as_factor() %>%
levels()
init <- if (is.empty(input$logit_lev)) isolate(input$gbt_lev) else input$logit_lev
selectInput(
inputId = "gbt_lev", label = "Choose first level:",
choices = levs,
selected = state_init("gbt_lev", init)
)
})
output$ui_gbt_evar <- renderUI({
if (not_available(input$gbt_rvar)) {
return()
}
vars <- varnames()
if (length(vars) > 0) {
vars <- vars[-which(vars == input$gbt_rvar)]
}
init <- if (input$gbt_type == "classification") {
# input$logit_evar
if (is.empty(input$logit_evar)) isolate(input$gbt_evar) else input$logit_evar
} else {
# input$reg_evar
if (is.empty(input$reg_evar)) isolate(input$gbt_evar) else input$reg_evar
}
selectInput(
inputId = "gbt_evar",
label = "Explanatory variables:",
choices = vars,
selected = state_multiple("gbt_evar", vars, init),
multiple = TRUE,
size = min(10, length(vars)),
selectize = FALSE
)
})
# function calls generate UI elements
output_incl("gbt")
output_incl_int("gbt")
output$ui_gbt_wts <- renderUI({
isNum <- .get_class() %in% c("integer", "numeric", "ts")
vars <- varnames()[isNum]
if (length(vars) > 0 && any(vars %in% input$gbt_evar)) {
vars <- base::setdiff(vars, input$gbt_evar)
names(vars) <- varnames() %>%
(function(x) x[match(vars, x)]) %>%
names()
}
vars <- c("None", vars)
selectInput(
inputId = "gbt_wts", label = "Weights:", choices = vars,
selected = state_single("gbt_wts", vars),
multiple = FALSE
)
})
output$ui_gbt_store_pred_name <- renderUI({
init <- state_init("gbt_store_pred_name", "pred_gbt")
textInput(
"gbt_store_pred_name",
"Store predictions:",
init
)
})
# output$ui_gbt_store_res_name <- renderUI({
# req(input$dataset)
# textInput("gbt_store_res_name", "Store residuals:", "", placeholder = "Provide variable name")
# })
## reset prediction and plot settings when the dataset changes
observeEvent(input$dataset, {
updateSelectInput(session = session, inputId = "gbt_predict", selected = "none")
updateSelectInput(session = session, inputId = "gbt_plots", selected = "none")
})
## reset prediction settings when the model type changes
observeEvent(input$gbt_type, {
updateSelectInput(session = session, inputId = "gbt_predict", selected = "none")
updateSelectInput(session = session, inputId = "gbt_plots", selected = "none")
})
output$ui_gbt_predict_plot <- renderUI({
predict_plot_controls("gbt")
})
output$ui_gbt_plots <- renderUI({
req(input$gbt_type)
if (input$gbt_type != "regression") {
gbt_plots <- head(gbt_plots, -1)
}
selectInput(
"gbt_plots", "Plots:",
choices = gbt_plots,
selected = state_single("gbt_plots", gbt_plots)
)
})
output$ui_gbt_nrobs <- renderUI({
nrobs <- nrow(.get_data())
choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>%
.[. < nrobs]
selectInput(
"gbt_nrobs", "Number of data points plotted:",
choices = choices,
selected = state_single("gbt_nrobs", choices, 1000)
)
})
## add a spinning refresh icon if the model needs to be (re)estimated
run_refresh(gbt_args, "gbt", tabs = "tabs_gbt", label = "Estimate model", relabel = "Re-estimate model")
output$ui_gbt <- renderUI({
req(input$dataset)
tagList(
conditionalPanel(
condition = "input.tabs_gbt == 'Summary'",
wellPanel(
actionButton("gbt_run", "Estimate model", width = "100%", icon = icon("play", verify_fa = FALSE), class = "btn-success")
)
),
wellPanel(
conditionalPanel(
condition = "input.tabs_gbt == 'Summary'",
radioButtons(
"gbt_type",
label = NULL, c("classification", "regression"),
selected = state_init("gbt_type", "classification"),
inline = TRUE
),
uiOutput("ui_gbt_rvar"),
uiOutput("ui_gbt_lev"),
uiOutput("ui_gbt_evar"),
uiOutput("ui_gbt_wts"),
with(tags, table(
tr(
td(numericInput(
"gbt_max_depth",
label = "Max depth:", min = 1, max = 20,
value = state_init("gbt_max_depth", 6)
), width = "50%"),
td(numericInput(
"gbt_learning_rate",
label = "Learning rate:", min = 0, max = 1, step = 0.1,
value = state_init("gbt_learning_rate", 0.3)
), width = "50%")
),
width = "100%"
)),
with(tags, table(
tr(
td(numericInput(
"gbt_min_split_loss",
label = "Min split loss:", min = 0.00001, max = 1000,
step = 0.01, value = state_init("gbt_min_split_loss", 0)
), width = "50%"),
td(numericInput(
"gbt_min_child_weight",
label = "Min child weight:", min = 1, max = 100,
step = 1, value = state_init("gbt_min_child_weight", 1)
), width = "50%")
),
width = "100%"
)),
with(tags, table(
tr(
td(numericInput(
"gbt_subsample",
label = "Sub-sample:", min = 0.1, max = 1,
value = state_init("gbt_subsample", 1)
), width = "50%"),
td(numericInput(
"gbt_nrounds",
label = "# rounds:",
value = state_init("gbt_nrounds", 100)
), width = "50%")
),
width = "100%"
)),
with(tags, table(
tr(
td(numericInput(
"gbt_early_stopping_rounds",
label = "Early stopping:", min = 1, max = 10,
step = 1, value = state_init("gbt_early_stopping_rounds", 3)
), width = "50%"),
td(numericInput(
"gbt_seed",
label = "Seed:",
value = state_init("gbt_seed", 1234)
), width = "50%")
),
width = "100%"
))
),
conditionalPanel(
condition = "input.tabs_gbt == 'Predict'",
selectInput(
"gbt_predict",
label = "Prediction input type:", reg_predict,
selected = state_single("gbt_predict", reg_predict, "none")
),
conditionalPanel(
"input.gbt_predict == 'data' | input.gbt_predict == 'datacmd'",
selectizeInput(
inputId = "gbt_pred_data", label = "Prediction data:",
choices = c("None" = "", r_info[["datasetlist"]]),
selected = state_single("gbt_pred_data", c("None" = "", r_info[["datasetlist"]])),
multiple = FALSE
)
),
conditionalPanel(
"input.gbt_predict == 'cmd' | input.gbt_predict == 'datacmd'",
returnTextAreaInput(
"gbt_pred_cmd", "Prediction command:",
value = state_init("gbt_pred_cmd", ""),
rows = 3,
placeholder = "Type a formula to set values for model variables (e.g., carat = 1; cut = 'Ideal') and press return"
)
),
conditionalPanel(
condition = "input.gbt_predict != 'none'",
checkboxInput("gbt_pred_plot", "Plot predictions", state_init("gbt_pred_plot", FALSE)),
conditionalPanel(
"input.gbt_pred_plot == true",
uiOutput("ui_gbt_predict_plot")
)
),
## only show if full data is used for prediction
conditionalPanel(
"input.gbt_predict == 'data' | input.gbt_predict == 'datacmd'",
tags$table(
tags$td(uiOutput("ui_gbt_store_pred_name")),
tags$td(actionButton("gbt_store_pred", "Store", icon = icon("plus", verify_fa = FALSE)), class = "top")
)
)
),
conditionalPanel(
condition = "input.tabs_gbt == 'Plot'",
uiOutput("ui_gbt_plots"),
conditionalPanel(
condition = "input.gbt_plots == 'dashboard'",
uiOutput("ui_gbt_nrobs")
),
conditionalPanel(
condition = "input.gbt_plots == 'pdp' | input.gbt_plots == 'pred_plot'",
uiOutput("ui_gbt_incl"),
uiOutput("ui_gbt_incl_int")
)
),
# conditionalPanel(
# condition = "input.tabs_gbt == 'Summary'",
# tags$table(
# tags$td(uiOutput("ui_gbt_store_res_name")),
# tags$td(actionButton("gbt_store_res", "Store", icon = icon("plus", verify_fa = FALSE)), class = "top")
# )
# )
),
help_and_report(
modal_title = "Gradient Boosted Trees",
fun_name = "gbt",
help_file = inclMD(file.path(getOption("radiant.path.model"), "app/tools/help/gbt.md"))
)
)
})
gbt_plot <- reactive({
# req(input$gbt_plots)
if (gbt_available() != "available") {
return()
}
if (is.empty(input$gbt_plots, "none")) {
return()
}
res <- .gbt()
if (is.character(res)) {
return()
}
nr_vars <- length(res$evar)
plot_height <- 500
plot_width <- 650
if ("dashboard" %in% input$gbt_plots) {
plot_height <- 750
} else if (input$gbt_plots %in% c("pdp", "pred_plot")) {
nr_vars <- length(input$gbt_incl) + length(input$gbt_incl_int)
plot_height <- max(250, ceiling(nr_vars / 2) * 250)
if (length(input$gbt_incl_int) > 0) {
plot_width <- plot_width + min(2, length(input$gbt_incl_int)) * 90
}
} else if ("vimp" %in% input$rf_plots) {
plot_height <- max(500, nr_vars * 35)
} else if ("vip" %in% input$rf_plots) {
plot_height <- max(500, nr_vars * 35)
}
list(plot_width = plot_width, plot_height = plot_height)
})
gbt_plot_width <- function() {
gbt_plot() %>%
(function(x) if (is.list(x)) x$plot_width else 650)
}
gbt_plot_height <- function() {
gbt_plot() %>%
(function(x) if (is.list(x)) x$plot_height else 500)
}
gbt_pred_plot_height <- function() {
if (input$gbt_pred_plot) 500 else 1
}
## output is called from the main radiant ui.R
output$gbt <- renderUI({
register_print_output("summary_gbt", ".summary_gbt")
register_print_output("predict_gbt", ".predict_print_gbt")
register_plot_output(
"predict_plot_gbt", ".predict_plot_gbt",
height_fun = "gbt_pred_plot_height"
)
register_plot_output(
"plot_gbt", ".plot_gbt",
height_fun = "gbt_plot_height",
width_fun = "gbt_plot_width"
)
## three separate tabs
gbt_output_panels <- tabsetPanel(
id = "tabs_gbt",
tabPanel(
"Summary",
verbatimTextOutput("summary_gbt")
),
tabPanel(
"Predict",
conditionalPanel(
"input.gbt_pred_plot == true",
download_link("dlp_gbt_pred"),
plotOutput("predict_plot_gbt", width = "100%", height = "100%")
),
download_link("dl_gbt_pred"), br(),
verbatimTextOutput("predict_gbt")
),
tabPanel(
"Plot",
download_link("dlp_gbt"),
plotOutput("plot_gbt", width = "100%", height = "100%")
)
)
stat_tab_panel(
menu = "Model > Trees",
tool = "Gradient Boosted Trees",
tool_ui = "ui_gbt",
output_panels = gbt_output_panels
)
})
gbt_available <- reactive({
req(input$gbt_type)
if (not_available(input$gbt_rvar)) {
if (input$gbt_type == "classification") {
"This analysis requires a response variable with two levels and one\nor more explanatory variables. If these variables are not available\nplease select another dataset.\n\n" %>%
suggest_data("titanic")
} else {
"This analysis requires a response variable of type integer\nor numeric and one or more explanatory variables.\nIf these variables are not available please select another dataset.\n\n" %>%
suggest_data("diamonds")
}
} else if (not_available(input$gbt_evar)) {
if (input$gbt_type == "classification") {
"Please select one or more explanatory variables.\n\n" %>%
suggest_data("titanic")
} else {
"Please select one or more explanatory variables.\n\n" %>%
suggest_data("diamonds")
}
} else {
"available"
}
})
.gbt <- eventReactive(input$gbt_run, {
gbti <- gbt_inputs()
gbti$envir <- r_data
if (is.empty(gbti$max_depth)) gbti$max_depth <- 6
if (is.empty(gbti$learning_rate)) gbti$learning_rate <- 0.3
if (is.empty(gbti$min_split_loss)) gbti$min_split_loss <- 0.01
if (is.empty(gbti$min_child_weight)) gbti$min_child_weight <- 1
if (is.empty(gbti$subsample)) gbti$subsample <- 1
if (is.empty(gbti$nrounds)) gbti$nrounds <- 100
if (is.empty(gbti$early_stopping_rounds)) gbti["early_stopping_rounds"] <- list(NULL)
withProgress(
message = "Estimating model", value = 1,
do.call(gbt, gbti)
)
})
.summary_gbt <- reactive({
if (not_pressed(input$gbt_run)) {
return("** Press the Estimate button to estimate the model **")
}
if (gbt_available() != "available") {
return(gbt_available())
}
summary(.gbt())
})
.predict_gbt <- reactive({
if (not_pressed(input$gbt_run)) {
return("** Press the Estimate button to estimate the model **")
}
if (gbt_available() != "available") {
return(gbt_available())
}
if (is.empty(input$gbt_predict, "none")) {
return("** Select prediction input **")
}
if ((input$gbt_predict == "data" || input$gbt_predict == "datacmd") && is.empty(input$gbt_pred_data)) {
return("** Select data for prediction **")
}
if (input$gbt_predict == "cmd" && is.empty(input$gbt_pred_cmd)) {
return("** Enter prediction commands **")
}
withProgress(message = "Generating predictions", value = 1, {
gbti <- gbt_pred_inputs()
gbti$object <- .gbt()
gbti$envir <- r_data
do.call(predict, gbti)
})
})
.predict_print_gbt <- reactive({
.predict_gbt() %>%
(function(x) if (is.character(x)) cat(x, "\n") else print(x))
})
.predict_plot_gbt <- reactive({
req(
pressed(input$gbt_run), input$gbt_pred_plot,
available(input$gbt_xvar),
!is.empty(input$gbt_predict, "none")
)
withProgress(message = "Generating prediction plot", value = 1, {
do.call(plot, c(list(x = .predict_gbt()), gbt_pred_plot_inputs()))
})
})
.plot_gbt <- reactive({
if (not_pressed(input$gbt_run)) {
return("** Press the Estimate button to estimate the model **")
} else if (gbt_available() != "available") {
return(gbt_available())
} else if (is.empty(input$gbt_plots, "none")) {
return("Please select a gradient boosted trees plot from the drop-down menu")
}
# pinp <- list(plots = input$gbt_plots, shiny = TRUE)
# if (input$gbt_plots == "dashboard") {
# req(input$gbt_nrobs)
# pinp <- c(pinp, nrobs = as_integer(input$gbt_nrobs))
# } else if (input$gbt_plots == "pdp") {
# pinp <- c(pinp)
# }
pinp <- gbt_plot_inputs()
pinp$shiny <- TRUE
if (input$gbt_plots == "dashboard") {
req(input$gbt_nrobs)
}
check_for_pdp_pred_plots("gbt")
withProgress(message = "Generating plots", value = 1, {
do.call(plot, c(list(x = .gbt()), pinp))
})
})
# observeEvent(input$gbt_store_res, {
# req(pressed(input$gbt_run))
# robj <- .gbt()
# if (!is.list(robj)) return()
# fixed <- fix_names(input$gbt_store_res_name)
# updateTextInput(session, "gbt_store_res_name", value = fixed)
# withProgress(
# message = "Storing residuals", value = 1,
# r_data[[input$dataset]] <- store(r_data[[input$dataset]], robj, name = fixed)
# )
# })
observeEvent(input$gbt_store_pred, {
req(!is.empty(input$gbt_pred_data), pressed(input$gbt_run))
pred <- .predict_gbt()
if (is.null(pred)) {
return()
}
fixed <- fix_names(input$gbt_store_pred_name)
updateTextInput(session, "gbt_store_pred_name", value = fixed)
withProgress(
message = "Storing predictions", value = 1,
r_data[[input$gbt_pred_data]] <- store(
r_data[[input$gbt_pred_data]], pred,
name = fixed
)
)
})
gbt_report <- function() {
if (is.empty(input$gbt_rvar)) {
return(invisible())
}
outputs <- c("summary")
inp_out <- list(list(prn = TRUE), "")
figs <- FALSE
if (!is.empty(input$gbt_plots, "none")) {
inp <- check_plot_inputs(gbt_plot_inputs())
inp_out[[2]] <- clean_args(inp, gbt_plot_args[-1])
inp_out[[2]]$custom <- FALSE
outputs <- c(outputs, "plot")
figs <- TRUE
}
if (!is.empty(input$gbt_store_res_name)) {
fixed <- fix_names(input$gbt_store_res_name)
updateTextInput(session, "gbt_store_res_name", value = fixed)
xcmd <- paste0(input$dataset, " <- store(", input$dataset, ", result, name = \"", fixed, "\")\n")
} else {
xcmd <- ""
}
if (!is.empty(input$gbt_predict, "none") &&
(!is.empty(input$gbt_pred_data) || !is.empty(input$gbt_pred_cmd))) {
pred_args <- clean_args(gbt_pred_inputs(), gbt_pred_args[-1])
if (!is.empty(pred_args$pred_cmd)) {
pred_args$pred_cmd <- strsplit(pred_args$pred_cmd, ";\\s*")[[1]]
} else {
pred_args$pred_cmd <- NULL
}
if (!is.empty(pred_args$pred_data)) {
pred_args$pred_data <- as.symbol(pred_args$pred_data)
} else {
pred_args$pred_data <- NULL
}
inp_out[[2 + figs]] <- pred_args
outputs <- c(outputs, "pred <- predict")
xcmd <- paste0(xcmd, "print(pred, n = 10)")
if (input$gbt_predict %in% c("data", "datacmd")) {
fixed <- fix_names(input$gbt_store_pred_name)
updateTextInput(session, "gbt_store_pred_name", value = fixed)
xcmd <- paste0(
xcmd, "\n", input$gbt_pred_data, " <- store(",
input$gbt_pred_data, ", pred, name = \"", fixed, "\")"
)
}
if (input$gbt_pred_plot && !is.empty(input$gbt_xvar)) {
inp_out[[3 + figs]] <- clean_args(gbt_pred_plot_inputs(), gbt_pred_plot_args[-1])
inp_out[[3 + figs]]$result <- "pred"
outputs <- c(outputs, "plot")
figs <- TRUE
}
}
gbt_inp <- gbt_inputs()
if (input$gbt_type == "regression") {
gbt_inp$lev <- NULL
}
update_report(
inp_main = clean_args(gbt_inp, gbt_args),
fun_name = "gbt",
inp_out = inp_out,
outputs = outputs,
figs = figs,
fig.width = gbt_plot_width(),
fig.height = gbt_plot_height(),
xcmd = xcmd
)
}
dl_gbt_pred <- function(path) {
if (pressed(input$gbt_run)) {
write.csv(.predict_gbt(), file = path, row.names = FALSE)
} else {
cat("No output available. Press the Estimate button to generate results", file = path)
}
}
download_handler(
id = "dl_gbt_pred",
fun = dl_gbt_pred,
fn = function() paste0(input$dataset, "_gbt_pred"),
type = "csv",
caption = "Save predictions"
)
download_handler(
id = "dlp_gbt_pred",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_gbt_pred"),
type = "png",
caption = "Save gradient boosted trees prediction plot",
plot = .predict_plot_gbt,
width = plot_width,
height = gbt_pred_plot_height
)
download_handler(
id = "dlp_gbt",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_gbt"),
type = "png",
caption = "Save gradient boosted trees plot",
plot = .plot_gbt,
width = gbt_plot_width,
height = gbt_plot_height
)
observeEvent(input$gbt_report, {
r_info[["latest_screenshot"]] <- NULL
gbt_report()
})
observeEvent(input$gbt_screenshot, {
r_info[["latest_screenshot"]] <- NULL
radiant_screenshot_modal("modal_gbt_screenshot")
})
observeEvent(input$modal_gbt_screenshot, {
gbt_report()
removeModal() ## remove shiny modal after save
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.