tests/testthat/test_rasterly.R

context("test examples")
library(data.table)
library(magrittr)
library(grid)
library(plotly)
library(rasterly)

d <- data.table::data.table(x = rnorm(1e5), y = rnorm(1e5), z = sample(1:5, 1e5, replace = TRUE), 
                               l = sample(1:2, 1e5, replace = TRUE))
min_x <- min(d$x)
max_x <- max(d$x)
min_y <- min(d$y)
max_y <- max(d$y)
colors <- c("#FF0000","#FF3F00","#FF7F00","#FFBF00","#FFFF00","#BFFF00","#7FFF00","#3FFF00",
            "#00FF00","#00FF3F","#00FF7F","#00FFBF","#00FFFF","#00BFFF","#007FFF","#003FFF",
            "#0000FF","#3F00FF","#7F00FF","#BF00FF","#FF00FF","#FF00BF","#FF007F","#FF003F")
test_that("example works", {
  # ex1
  ########### "sum" ##############
  rasterly(d,
           mapping = aes(x = x, y = y),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y)) %>%
    rasterly_points(xlim = c(min_x, (max_x + min_x)/2),
                     ylim = c(min_y, (max_y + min_y)/2),
                     color = fire_map) %>% 
    rasterly_points(mapping = aes(x = x, y = y, on = -x),
                     xlim = c((max_x + min_x)/2, max_x),
                     ylim = c(min_y, (max_y + min_y)/2),
                     color = c("lightblue", "darkblue")) %>% 
    rasterly_points(mapping = aes(x = x, y = y, color = z),
                     xlim = c((max_x + min_x)/2, max_x),
                     ylim = c((max_y + min_y)/2, max_y),
                     color = rev(colors)) %>% 
    rasterly_points(mapping = aes(x = x, y = y, color = z, size = z),
                     xlim = c(min_x, (max_x + min_x)/2),
                     ylim = c((max_y + min_y)/2, max_y),
                     max_size = 3,
                     layout = "cover") %>%
    rasterly_build() -> ds
  expect_equal(grid::is.grob(grid::rasterGrob(ds$image)), TRUE)
  
  ########### "any" ##############
  # reduction function is any and group_by_data_table is TRUE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "any") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "any") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "any") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  ########### "mean" ##############
  # reduction function is any and group_by_data_table is TRUE
  rasterly(d,
           mapping = aes(x = x, y = y),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "mean") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "mean") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "mean") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  ########### "first" ##############
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "first") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "first") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = z),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "first") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  ########### "last" ##############
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "last") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "last") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "last") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  ########### "m2" ##############
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "m2") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "m2") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "m2") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  ########### "max" ##############
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "max") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "max") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "max") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  ########### "min" ##############
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "min") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "min") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "min") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  ########### "var" ##############
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "var") %>%
    rasterly_points(color = fire_map, group_by_data_table = TRUE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  # reduction function is any and group_by_data_table is FALSE
  rasterly(d,
           mapping = aes(x = x, y = y, on = x),
           background = "black",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "var") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)
  
  rasterly(d,
           mapping = aes(x = x, y = y, color = l, on = x),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "var") %>%
    rasterly_points(group_by_data_table = FALSE) %>%
    rasterly_build() -> ds
  expect_equal(is.rasterly(ds), TRUE)  
  
  # plotRasterly
  # p <- plotRasterly(d, 
  #                 mapping = aes(x = x, y = y, color = z),
  #                 color = hourColors_map,
  #                 as_image = TRUE)
  # expect_equal(inherits(p, "plotly"), TRUE)
  
  # add_rasterly_heatmap
  p <- plot_ly(data = d) %>%
    add_rasterly_heatmap(x = ~x, y = ~y)
  p
  expect_equal(inherits(p, "plotly"), TRUE)
  
  # ggRasterly
  g <- ggRasterly(d,
                  mapping = aes(x = x, y = y),
                  plot_width = 300, plot_height = 400,
                  x_range = c(min_x, max_x),
                  y_range = c(min_y, max_y))
  expect_equal(inherits(g, "gg"), TRUE)
  
  g <- ggRasterly(d,
                  mapping = aes(x = x, y = y, color = z),
                  plot_width = 300, plot_height = 400,
                  x_range = c(min_x, max_x),
                  y_range = c(min_y, max_y))
  expect_equal(inherits(g, "gg"), TRUE)
  
  # plotRasterly as points
  p <- plotRasterly(d,
                    mapping = aes(x = x, y = y),
                    plot_width = 300, plot_height = 400,
                    x_range = c(min_x, max_x),
                    y_range = c(min_y, max_y),
                    as_image = FALSE)
  expect_equal(inherits(p, "plotly"), TRUE)
  
  
  # add_rasterly_heatmap
  p <- plot_ly(data = d) %>%
    add_rasterly_image(x = ~x, y = ~y, color = ~z,
                       plot_width = 200, plot_height = 200,
                       color_map = hourColors_map)
  expect_equal(inherits(p, "plotly"), TRUE)
  
  # set guides
  s <- set_guides(ds)
  expect_equal(inherits(s, "matrix"), TRUE)
  s <- set_guides(ds$image)
  expect_equal(inherits(s, "matrix"), TRUE)
  s <- set_guides(as.matrix(ds$image))
  expect_equal(inherits(s, "matrix"), TRUE)
  
  # rplot
  r <- with(diamonds, 
       rplot(x = carat, y = price, color = color)
  )
  expect_equal(is.null(r), TRUE)
  # `color` represents an actual color vector
  r <- with(diamonds, 
        rplot(x = carat, y = price, color = fire_map))
  expect_equal(is.null(r), TRUE)
  
  # rasterize_points
  expect_warning(
    rasterly(d,
             mapping = aes(x = x, y = y, on = x),
             background = "black",
             x_range = c(min_x, max_x),
             y_range = c(min_y, max_y),
             color = colors,
             reduction_func = "min") %>%
      rasterize_points(color = fire_map, group_by_data_table = FALSE) %>%
      rasterly_build()
  )
  
  # rasterly_guides
  p <- rasterly(d,plot_width = 100, plot_height = 100,
           mapping = aes(x = x, y = y, on = x),
           background = "blue",
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y),
           color = colors,
           reduction_func = "min") %>%
    rasterly_points(color = fire_map, group_by_data_table = FALSE) %>% 
    rasterly_guides()
  expect_equal(is.rasterly(p), TRUE)
  
  # extract
  pp <- p['background']
  expect_equal(length(pp), 3)
  p['background'] <- "yellow"
  p['background', level = 1:3] <- "yellow"
  
  # grobs
  rasterly(d,
           mapping = aes(x = x, y = y, color = factor(l)),
           x_range = c(min_x, max_x),
           y_range = c(min_y, max_y)) %>%
    rasterly_points() %>%
    rasterly_build() -> ds
  p <- plot(ds)
  expect_equal(is.null(p), TRUE)
  # test other arguments in plot
  g <- rasterlyGrob(ds, xlim = c(-2, 2), ylim = c(-2 ,2), 
                    main = "random", 
                    xlab = "rnorm(.)", 
                    ylab = "rnorm(.)",
                    sub = "This is a sub title", 
                    interpolate = TRUE, axes =  TRUE, 
                    axes_gpar = grid::gpar(col = "red", cex = 1),
                    label_gpar = grid::gpar(col = "blue", cex = 1.2),
                    main_gpar = grid::gpar(col = "pink", cex = 1.5), 
                    name = "MyGrob")
  expect_equal(grid::is.grob(g), TRUE)
  # test legends
  grid::grid.newpage()
  gr <- grid.rasterly(ds,
                      legend = TRUE, legend_label = 1:5)
  expect_equal(is.null(gr), TRUE)
  grid::grid.newpage()
  gr <- grid.rasterly(ds,
                      legend = TRUE, legend_label = as.character(1:5))
  expect_equal(is.null(gr), TRUE)
})

Try the rasterly package in your browser

Any scripts or data that you put into this service are public.

rasterly documentation built on July 2, 2020, 2:12 a.m.