| stats_table | R Documentation |
A simple interface to lower-level statistics functions, including
stats::wilcox.test(), stats::kruskal.test(), emmeans::emmeans(),
and emmeans::emtrends().
stats_table(
df,
regr = NULL,
resp = attr(df, "response"),
stat.by = NULL,
split.by = NULL,
test = "emmeans",
fit = "gam",
at = NULL,
level = 0.95,
alt = "!=",
mu = 0,
p.adj = "fdr"
)
df |
The dataset (data.frame or tibble object). "Dataset fields"
mentioned below should match column names in |
regr |
Dataset field with the x-axis (independent; predictive)
values. Must be numeric. Default: |
resp |
Dataset field with the y-axis (dependent; response) values,
such as taxa abundance or alpha diversity.
Default: |
stat.by |
Dataset field with the statistical groups. Must be
categorical. Default: |
split.by |
Dataset field(s) that the data should be split by prior to
any calculations. Must be categorical. Default: |
test |
Method for computing p-values: |
fit |
How to fit the trendline. |
at |
Position(s) along the x-axis where the means or slopes should be
evaluated. Default: |
level |
The confidence level for calculating a confidence interval.
Default: |
alt |
Alternative hypothesis direction. Options are |
mu |
Reference value to test against. Default: |
p.adj |
Method to use for multiple comparisons adjustment of
p-values. Run |
A tibble data.frame with fields from the table below. This tibble
object provides the $code operator to print the R code used to generate
the statistics.
| Field | Description |
| .mean | Estimated marginal mean. See emmeans::emmeans(). |
| .mean.diff | Difference in means. |
| .slope | Trendline slope. See emmeans::emtrends(). |
| .slope.diff | Difference in slopes. |
| .h1 | Alternate hypothesis. |
| .p.val | Probability that null hypothesis is correct. |
| .adj.p | .p.val after adjusting for multiple comparisons. |
| .effect.size | Effect size. See emmeans::eff_size(). |
| .lower | Confidence interval lower bound. |
| .upper | Confidence interval upper bound. |
| .se | Standard error. |
| .n | Number of samples. |
| .df | Degrees of freedom. |
| .stat | Wilcoxon or Kruskal-Wallis rank sum statistic. |
| .t.ratio | .mean / .se |
| .r.sqr | Percent of variation explained by the model. |
| .adj.r | .r.sqr, taking degrees of freedom into account. |
| .aic | Akaike Information Criterion (predictive models). |
| .bic | Bayesian Information Criterion (descriptive models). |
| .loglik | Log-likelihood goodness-of-fit score. |
| .fit.p | P-value for observing this fit by chance. |
Other stats_tables:
adiv_stats(),
bdiv_stats(),
distmat_stats(),
taxa_stats()
library(rbiom)
biom <- rarefy(hmp50)
df <- taxa_table(biom, rank = "Family")
stats_table(df, stat.by = "Body Site")[,1:6]
df <- adiv_table(biom)
stats_table(df, stat.by = "Sex", split.by = "Body Site")[,1:7]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.