Nothing
      # default ====
#' documentation_default
#' 
#' @name documentation_default
#' @keywords internal
#' 
#' @param biom   An [rbiom object][rbiom_objects], such as from [as_rbiom()]. 
#'        Any value accepted by [as_rbiom()] can also be given here.
#' 
#' @param mtx   A matrix-like object.
#'        
#' @param tree  A `phylo` object representing the phylogenetic
#'        relationships of the taxa in `biom`. Only required when 
#'        computing UniFrac distances. Default: `biom$tree`
#'
#' @param underscores   When parsing the tree, should underscores be kept as 
#'        is? By default they will be converted to spaces (unless the entire ID
#'        is quoted). Default `FALSE`
#'     
#' @param md  Dataset field(s) to include in the output data frame, or `'.all'` 
#'        to include all metadata fields. Default: `'.all'`
#' 
#' @param adiv   Alpha diversity metric(s) to use. Options are: `"OTUs"`, 
#'        `"Shannon"`, `"Chao1"`, `"Simpson"`, and/or 
#'        `"InvSimpson"`. Set `adiv=".all"` to use all metrics.
#'        Multiple/abbreviated values allowed.
#'        Default: `"Shannon"`
#' 
#' @param bdiv  Beta diversity distance algorithm(s) to use. Options are:
#'        `"Bray-Curtis"`, `"Manhattan"`, `"Euclidean"`, 
#'        `"Jaccard"`, and `"UniFrac"`. For `"UniFrac"`, a 
#'        phylogenetic tree must be present in `biom` or explicitly 
#'        provided via `tree=`. Multiple/abbreviated values allowed. 
#'        Default: `"Bray-Curtis"`
#'       
#' 
#' @param taxa   Which taxa to display. An integer value will show the top n
#'        most abundant taxa. A value 0 <= n < 1 will show any taxa with that 
#'        mean abundance or greater (e.g. `0.1` implies >= 10%). A 
#'        character vector of taxa names will show only those named taxa. 
#'        Default: `6`.
#'        
#' @param ord    Method for reducing dimensionality. Options are:
#'        \describe{
#'            \item{`"PCoA"` - }{ Principal coordinate analysis; [ape::pcoa()]. }
#'            \item{`"UMAP"` - }{ Uniform manifold approximation and projection; [uwot::umap()]. }
#'            \item{`"NMDS"` - }{ Nonmetric multidimensional scaling; [vegan::metaMDS()]. }
#'            \item{`"tSNE"` - }{ t-distributed stochastic neighbor embedding; [tsne::tsne()]. }
#'        }
#'        Multiple/abbreviated values allowed. Default: `"PCoA"`
#'        
#'     
#' @param weighted  Take relative abundances into account. When 
#'        `weighted=FALSE`, only presence/absence is considered.
#'        Multiple values allowed. Default: `TRUE`
#'     
#' @param normalized  Only changes the "Weighted UniFrac" calculation.
#'        Divides result by the total branch weights. Default: `TRUE`
#'       
#' 
#' @param delta  For numeric metadata, report the absolute difference in values 
#'        for the two samples, for instance `2` instead of `"10 vs 12"`. 
#'        Default: `TRUE`
#'        
#' @param rank   What rank(s) of taxa to display. E.g. `"Phylum"`, 
#'        `"Genus"`, `".otu"`, etc. An integer vector can also be 
#'        given, where `1` is the highest rank, `2` is the second 
#'        highest, `-1` is the lowest rank, `-2` is the second 
#'        lowest, and `0` is the OTU "rank". Run `biom$ranks` to 
#'        see all options for a given rbiom object. Default: `-1`.
#'        
#' @param lineage  Include all ranks in the name of the taxa. For instance,
#'        setting to `TRUE` will produce 
#'        `Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales`. 
#'        Otherwise the taxa name will simply be `Coriobacteriales`. You 
#'        want to set this to TRUE when `unc = "asis"` and you have taxa 
#'        names (such as \emph{Incertae_Sedis}) that map to multiple higher 
#'        level ranks. Default: `FALSE`
#'        
#' @param unc  How to handle unclassified, uncultured, and similarly ambiguous
#'        taxa names. Options are: 
#'        \describe{
#'          \item{`"singly"` - }{ Replaces them with the OTU name. }
#'          \item{`"grouped"` - }{ Replaces them with a higher rank's name. }
#'          \item{`"drop"` - }{ Excludes them from the result. }
#'          \item{`"asis"` - }{ To not check/modify any taxa names. }
#'        }
#'        Abbreviations are allowed. Default: `"singly"`
#'       
#'        
#' @param other  Sum all non-itemized taxa into an "Other" taxa. When 
#'        `FALSE`, only returns taxa matched by the `taxa` 
#'        argument. Specifying `TRUE` adds "Other" to the returned set.
#'        A string can also be given to imply `TRUE`, but with that
#'        value as the name to use instead of "Other".
#'        Default: `FALSE`
#'        
#' @param sparse  If `TRUE`, returns a 
#'        [slam::simple_triplet_matrix()], otherwise returns a 
#'        normal R matrix object. Default: `FALSE`
#'        
#' @param p.top   Only display taxa with the most significant differences in 
#'        abundance. If `p.top` is >= 1, then the `p.top` most 
#'        significant taxa are displayed. If `p.top` is less than one, all 
#'        taxa with an adjusted p-value <= `p.top` are displayed. 
#'        Recommended to be used in combination with the `taxa` parameter 
#'        to set a lower bound on the mean abundance of considered taxa. 
#'        Default: `Inf`
#'        
#' @param y.transform   The transformation to apply to the y-axis. Visualizing 
#'        differences of both high- and low-abundance taxa is best done with
#'        a non-linear axis. Options are: 
#'        \describe{
#'          \item{`"sqrt"` - }{ square-root transformation }
#'          \item{`"log1p"` - }{ log(y + 1) transformation }
#'          \item{`"none"` - }{ no transformation }
#'        }
#'        These methods allow visualization of both high- and low-abundance
#'        taxa simultaneously, without complaint about 'zero' count
#'        observations. Default: `"sqrt"`
#'        Use `xaxis.transform` or `yaxis.transform` to pass custom values 
#'        directly to ggplot2's `scale_*` functions.
#'        
#' @param flip   Transpose the axes, so that taxa are present as rows instead
#'        of columns. Default: `FALSE`
#'
#' @param stripe   Shade every other x position. Default: \emph{same as flip}
#'     
#' @param ci   How to calculate min/max of the \bold{crossbar}, 
#'        \bold{errorbar}, \bold{linerange}, and \bold{pointrange} layers.
#'        Options are: `"ci"` (confidence interval), `"range"`, 
#'        `"sd"` (standard deviation), `"se"` (standard error), and 
#'        `"mad"` (median absolute deviation). 
#'        The center mark of \bold{crossbar} and \bold{pointrange} represents
#'        the mean, except for `"mad"` in which case it represents the median. 
#'        Default: `"ci"`
#'
#' @param p.label   Minimum adjusted p-value to display on the plot with a 
#'        bracket.
#'        \describe{
#'          \item{`p.label = 0.05` - }{ Show p-values that are <= 0.05. }
#'          \item{`p.label = 0` - }{ Don't show any p-values on the plot. }
#'          \item{`p.label = 1` - }{ Show all p-values on the plot. }
#'        }
#'        If a numeric vector with more than one value is 
#'        provided, they will be used as breaks for asterisk notation.
#'        Default: `0.05`
#'     
#' @param level   The confidence level for calculating a confidence interval. 
#'        Default: `0.95`
#'        
#' @param caption   Add methodology caption beneath the plot.
#'        Default: `TRUE`
#'        
#' @param outliers   Show boxplot outliers? `TRUE` to always show. 
#'        `FALSE` to always hide. `NULL` to only hide them when
#'        overlaying a dot or strip chart.  Default: `NULL`
#' 
#' @param xlab.angle   Angle of the labels at the bottom of the plot. 
#'        Options are `"auto"`, `'0'`, `'30'`, and `'90'`. 
#'        Default: `"auto"`.
#'        
#' @param k   Number of ordination dimensions to return. Either `2L` or 
#'        `3L`. Default: `2L`
#'        
#' @param split.by   Dataset field(s) that the data should be split by prior to 
#'        any calculations. Must be categorical. Default: `NULL`
#' 
#' @param dm   A `dist`-class distance matrix, as returned from 
#'        [bdiv_distmat()] or [stats::dist()]. Required.
#'        
#' @param groups  A named vector of grouping values. The names should 
#'        correspond to `attr(dm, 'Labels')`. Values can be either 
#'        categorical or numeric. Required.
#' 
#' @param df   The dataset (data.frame or tibble object). "Dataset fields" 
#'        mentioned below should match column names in `df`. Required.
#'        
#' @param regr   Dataset field with the x-axis (independent; predictive) 
#'        values. Must be numeric. Default: `NULL`
#' 
#' @param resp   Dataset field with the y-axis (dependent; response) values, 
#'        such as taxa abundance or alpha diversity. 
#'        Default: `attr(df, 'response')`
#'        
#' @param stat.by   Dataset field with the statistical groups. Must be 
#'        categorical. Default: `NULL`
#'        
#' @param color.by   Dataset field with the group to color by. Must be 
#'        categorical. Default: `stat.by`
#'        
#' @param shape.by   Dataset field with the group for shapes. Must be 
#'        categorical. Default: `stat.by`
#'        
#' @param facet.by   Dataset field(s) to use for faceting. Must be categorical. 
#'        Default: `NULL`
#'        
#' @param colors   How to color the groups. Options are:
#'        \describe{
#'            \item{`TRUE` - }{ Automatically select colorblind-friendly colors. }
#'            \item{`FALSE` or `NULL` - }{ Don't use colors. }
#'            \item{a palette name - }{ Auto-select colors from this set. E.g. `"okabe"` }
#'            \item{character vector - }{ Custom colors to use. E.g. `c("red", "#00FF00")` }
#'            \item{named character vector - }{ Explicit mapping. E.g. `c(Male = "blue", Female = "red")` }
#'        }
#'        See "Aesthetics" section below for additional information.
#'        Default: `TRUE`
#'        
#' @param shapes   Shapes for each group. 
#'        Options are similar to `colors`'s: `TRUE`, `FALSE`, `NULL`, shape 
#'        names (typically integers 0 - 17), or a named vector mapping 
#'        groups to specific shape names.
#'        See "Aesthetics" section below for additional information.
#'        Default: `TRUE`
#'        
#' @param patterns   Patterns for each group. 
#'        Options are similar to `colors`'s: `TRUE`, `FALSE`, `NULL`, pattern 
#'        names (`"brick"`, `"chevron"`, `"fish"`, `"grid"`, etc), or a named 
#'        vector mapping groups to specific pattern names.
#'        See "Aesthetics" section below for additional information.
#'        Default: `FALSE`
#' 
#' @param test   Method for computing p-values: `'wilcox'`, `'kruskal'`, 
#'        `'emmeans'`, or `'emtrends'`. Default: `'emmeans'`
#' 
#' @param fit   How to fit the trendline. `'lm'`, `'log'`, or `'gam'`. 
#'        Default: `'gam'`
#'        
#' @param at   Position(s) along the x-axis where the means or slopes should be 
#'        evaluated. Default: `NULL`, which samples 100 evenly spaced positions 
#'        and selects the position where the p-value is most significant.
#'        
#' @param alt   Alternative hypothesis direction. Options are `'!='` 
#'        (two-sided; not equal to `mu`), `'<'` (less than `mu`), or `'>'` 
#'        (greater than `mu`). Default: `'!='`
#'        
#' @param mu   Reference value to test against. Default: `0`
#' 
#' @param check   Generate additional plots to aid in assessing data normality. 
#'        Default: `FALSE`
#'        
#' @param within,between   Dataset field(s) for intra- or inter- sample 
#'        comparisons. Alternatively, dataset field names given elsewhere can 
#'        be prefixed with `'=='` or `'!='` to assign them to `within` or 
#'        `between`, respectively. Default: `NULL`
#'        
#' @param seed  Random seed for permutations. Must be a non-negative integer. 
#'              Default: `0`
#'        
#' @param cpus  The number of CPUs to use. Set to `NULL` to use all available, 
#'        or to `1` to disable parallel processing. Default: `NULL`
#'        
#' @param permutations  Number of random permutations to use. 
#'        Default: `999`
#' 
#' @param p.adj   Method to use for multiple comparisons adjustment of 
#'        p-values. Run `p.adjust.methods` for a list of available 
#'        options. Default: `"fdr"`
#' 
#' @param depths   Rarefaction depths to show in the plot, or `NULL` to 
#'        auto-select. Default: `NULL`
#'        
#' @param rline   Where to draw a horizontal line on the plot, intended to show
#'        a particular rarefaction depth. Set to `TRUE` to show an 
#'        auto-selected rarefaction depth or `FALSE` to not show a line.
#'        Default: `NULL`
#'        
#' @param clone   Create a copy of `biom` before modifying. If `FALSE`, `biom` 
#'        is modified in place as a side-effect. See [speed ups][speed] for 
#'        use cases. Default: `TRUE`
#' 
#' @param labels   Show sample names under each bar. Default: `FALSE`
#' 
#' @param transform   Transformation to apply. Options are: 
#'        `c("none", "rank", "log", "log1p", "sqrt", "percent")`. `"rank"` is 
#'        useful for correcting for non-normally distributions before applying 
#'        regression statistics. Default: `"none"`
#' 
#' @param ties   When `transform="rank"`, how to rank identical values.
#'        Options are: `c("average", "first", "last", "random", "max", "min")`. 
#'        See `rank()` for details. Default: `"random"`
#'   
NULL
# biom - rbiom object ====
#' documentation_biom.rbiom
#' 
#' @name documentation_biom.rbiom
#' @keywords internal
#' 
#' @param biom    An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#' 
#' @param .data    An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#' 
#' @param x    An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#' 
#' @param object    An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#' 
#' @param data    An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#' 
NULL
# return - biom ====
#' documentation_return.biom
#' 
#' @name documentation_return.biom
#' @keywords internal
#' 
#' @return An [rbiom object][rbiom_objects].
#' 
NULL
# rank - NULL ====
#' documentation_rank.NULL
#' 
#' @name documentation_rank.NULL
#' @keywords internal
#'        
#' @param rank   What rank(s) of taxa to compute biplot coordinates and 
#'        statistics for, or `NULL` to disable. E.g. `"Phylum"`, 
#'        `"Genus"`, `".otu"`, etc. An integer vector can also be 
#'        given, where `1` is the highest rank, `2` is the second 
#'        highest, `-1` is the lowest rank, `-2` is the second 
#'        lowest, and `0` is the OTU "rank". Run `biom$ranks` to 
#'        see all options for a given rbiom object. Default: `NULL`.
#' 
NULL
# rank - 2 ====
#' documentation_rank.2
#' 
#' @name documentation_rank.2
#' @keywords internal
#'        
#' @param rank   What rank(s) of taxa to compute biplot coordinates and 
#'        statistics for, or `NULL` to disable. E.g. `"Phylum"`, 
#'        `"Genus"`, `".otu"`, etc. An integer vector can also be 
#'        given, where `1` is the highest rank, `2` is the second 
#'        highest, `-1` is the lowest rank, `-2` is the second 
#'        lowest, and `0` is the OTU "rank". Run `biom$ranks` to 
#'        see all options for a given rbiom object. Default: `2`.
#' 
NULL
# clusters ====
#' documentation_clusters
#' 
#' @name documentation_clusters
#' @keywords internal
#'        
#' @param k   Number of clusters. Default: `5L`
#'        
#' @param rank   Which taxa rank to use. E.g. `"Phylum"`, 
#'        `"Genus"`, `".otu"`, etc. An integer can also be 
#'        given, where `1` is the highest rank, `2` is the second 
#'        highest, `-1` is the lowest rank, `-2` is the second 
#'        lowest, and `0` is the OTU "rank". Run `biom$ranks` to 
#'        see all options for a given rbiom object. Default: `.otu`.
#' 
#' @return A numeric factor assigning samples to clusters.
#' 
NULL
# taxa - 4 ====
#' documentation_taxa.4
#' 
#' @name documentation_taxa.4
#' @keywords internal
#' 
#' @param taxa   Which taxa to display. An integer value will show the top n
#'        most abundant taxa. A value 0 <= n < 1 will show any taxa with that 
#'        mean abundance or greater (e.g. `0.1` implies >= 10%). A 
#'        character vector of taxa names will show only those named taxa. 
#'        Default: `4`.
#' 
NULL
# cmp ====
#' documentation_cmp
#' 
#' @name documentation_cmp
#' @keywords internal
#' 
#' @section Metadata Comparisons:
#' 
#' Prefix metadata fields with `==` or `!=` to limit comparisons to within or 
#' between groups, respectively. For example, `stat.by = '==Sex'` will 
#' run calculations only for intra-group comparisons, returning "Male" and
#' "Female", but NOT "Female vs Male". Similarly, setting 
#' `stat.by = '!=Body Site'` will only show the inter-group comparisons, such 
#' as "Saliva vs Stool", "Anterior nares vs Buccal mucosa", and so on.
#' 
#' The same effect can be achieved by using the `within` and `between` 
#' parameters. `stat.by = '==Sex'` is equivalent to 
#' `stat.by = 'Sex', within = 'Sex'`.
#'          
NULL
# heatmap ====
#' documentation_heatmap
#' 
#' @name documentation_heatmap
#' @keywords internal
#' 
#' @inherit documentation_plot_return return
#' 
#' @param grid   Color palette name, or a list with entries for `label`, 
#'        `colors`, `range`, `bins`, `na.color`, and/or 
#'        `guide`. See the Track Definitions section for details.
#'        Default: `list(label = "Grid Value", colors = "imola")`
#'        
#' @param label   Label the matrix rows and columns. You can supply a list
#'        or logical vector of length two to control row labels and column 
#'        labels separately, for example 
#'        `label = c(rows = TRUE, cols = FALSE)`, or simply 
#'        `label = c(TRUE, FALSE)`. Other valid options are `"rows"`,
#'        `"cols"`, `"both"`, `"bottom"`, `"right"`,
#'        and `"none"`.
#'        Default: `TRUE`
#'        
#' @param label_size   The font size to use for the row and column labels. You 
#'        can supply a numeric vector of length two to control row label sizes 
#'        and column label sizes separately, for example 
#'        `c(rows = 20, cols = 8)`, or simply `c(20, 8)`.
#'        Default: `NULL`, which computes: 
#'        `pmax(8, pmin(20, 100 / dim(mtx)))`
#'        
#' @param rescale   Rescale rows or columns to all have a common min/max.
#'        Options: `"none"`, `"rows"`, or `"cols"`.
#'        Default: `"none"`
#'        
#' @param trees   Draw a dendrogram for rows (left) and columns (top). You can 
#'        supply a list or logical vector of length two to control the row tree 
#'        and column tree separately, for example 
#'        `trees = c(rows = TRUE, cols = FALSE)`, 
#'        or simply `trees = c(TRUE, FALSE)`. 
#'        Other valid options are `"rows"`, `"cols"`, `"both"`, 
#'        `"left"`, `"top"`, and `"none"`.
#'        Default: `TRUE`
#'        
#' @param clust   Clustering algorithm for reordering the rows and columns by 
#'        similarity. You can supply a list or character vector of length two to 
#'        control the row and column clustering separately, for example 
#'        `clust = c(rows = "complete", cols = NA)`, or simply 
#'        `clust = c("complete", NA)`. Options are:
#'        \describe{
#'          \item{`FALSE` or `NA` - }{ Disable reordering. }
#'          \item{An `hclust` class object}{ E.g. from [stats::hclust()]. }
#'          \item{A method name - }{ `"ward.D"`, 
#'            `"ward.D2"`, `"single"`, `"complete"`, 
#'            `"average"`, `"mcquitty"`, `"median"`, or 
#'            `"centroid"`. }
#'        }
#'        Default: `"complete"`
#'        
#' @param dist   Distance algorithm to use when reordering the rows and columns 
#'        by similarity. You can supply a list or character vector of length
#'        two to control the row and column clustering separately, for example 
#'        `dist = c(rows = "euclidean", cols = "maximum")`, or simply 
#'        `dist = c("euclidean", "maximum")`. Options are:
#'        \describe{
#'          \item{A `dist` class object}{ E.g. from [stats::dist()] or [bdiv_distmat()]. }
#'          \item{A method name - }{ `"euclidean"`, 
#'            `"maximum"`, `"manhattan"`, `"canberra"`, 
#'            `"binary"`, or `"minkowski"`. }
#'        }
#'        Default: `"euclidean"`
#'        
#' @param tree_height,track_height   The height of the dendrogram or annotation
#'        tracks as a percentage of the overall grid size. Use a numeric vector 
#'        of length two to assign `c(top, left)` independently. 
#'        Default: `10` (10% of the grid's height)
#'        
#' @param asp   Aspect ratio (height/width) for entire grid.
#'        Default: `1` (square)
#'        
#' @param legend   Where to place the legend. Options are: `"right"` or
#'        `"bottom"`. Default: `"right"`
#'        
#' @param title   Plot title. Set to `TRUE` for a default title, `NULL` for 
#'        no title, or any character string. Default: `TRUE`
#'        
#' @param ...   Additional arguments to pass on to ggplot2::theme().
#' 
NULL
# dist test ====
#' documentation_dist_test
#' 
#' @name documentation_dist_test
#' @keywords internal
#' 
#' @param stat.by   The categorical or numeric metadata field over which 
#'        statistics should be calculated. Required.
#'        
#' @param test    Permutational test for accessing significance. Options are:
#'        \describe{
#'            \item{`"adonis2"` - }{ Permutational MANOVA; [vegan::adonis2()]. }
#'            \item{`"mrpp"` - }{ Multiple response permutation procedure; [vegan::mrpp()]. }
#'            \item{`"none"` - }{ Don't run any statistics. }
#'        }
#'        Abbreviations are allowed. Default: `"adonis2"`
#'       
#'        
NULL
# plot - return ====
#' documentation_plot_return
#' 
#' @name documentation_plot_return
#' @keywords internal
#' 
#' @return A `ggplot2` plot. The computed data points and ggplot 
#'         command are available as `$data` and `$code`, 
#'         respectively.
#' 
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.