Nothing
# default ====
#' documentation_default
#'
#' @name documentation_default
#' @keywords internal
#'
#' @param biom An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#' Any value accepted by [as_rbiom()] can also be given here.
#'
#' @param mtx A matrix-like object.
#'
#' @param tree A `phylo` object representing the phylogenetic
#' relationships of the taxa in `biom`. Only required when
#' computing UniFrac distances. Default: `biom$tree`
#'
#' @param underscores When parsing the tree, should underscores be kept as
#' is? By default they will be converted to spaces (unless the entire ID
#' is quoted). Default `FALSE`
#'
#' @param md Dataset field(s) to include in the output data frame, or `'.all'`
#' to include all metadata fields. Default: `'.all'`
#'
#' @param adiv Alpha diversity metric(s) to use. Options are: `"OTUs"`,
#' `"Shannon"`, `"Chao1"`, `"Simpson"`, and/or
#' `"InvSimpson"`. Set `adiv=".all"` to use all metrics.
#' Multiple/abbreviated values allowed.
#' Default: `"Shannon"`
#'
#' @param bdiv Beta diversity distance algorithm(s) to use. Options are:
#' `"Bray-Curtis"`, `"Manhattan"`, `"Euclidean"`,
#' `"Jaccard"`, and `"UniFrac"`. For `"UniFrac"`, a
#' phylogenetic tree must be present in `biom` or explicitly
#' provided via `tree=`. Multiple/abbreviated values allowed.
#' Default: `"Bray-Curtis"`
#'
#'
#' @param taxa Which taxa to display. An integer value will show the top n
#' most abundant taxa. A value 0 <= n < 1 will show any taxa with that
#' mean abundance or greater (e.g. `0.1` implies >= 10%). A
#' character vector of taxa names will show only those named taxa.
#' Default: `6`.
#'
#' @param ord Method for reducing dimensionality. Options are:
#' \describe{
#' \item{`"PCoA"` - }{ Principal coordinate analysis; [ape::pcoa()]. }
#' \item{`"UMAP"` - }{ Uniform manifold approximation and projection; [uwot::umap()]. }
#' \item{`"NMDS"` - }{ Nonmetric multidimensional scaling; [vegan::metaMDS()]. }
#' \item{`"tSNE"` - }{ t-distributed stochastic neighbor embedding; [tsne::tsne()]. }
#' }
#' Multiple/abbreviated values allowed. Default: `"PCoA"`
#'
#'
#' @param weighted Take relative abundances into account. When
#' `weighted=FALSE`, only presence/absence is considered.
#' Multiple values allowed. Default: `TRUE`
#'
#' @param normalized Only changes the "Weighted UniFrac" calculation.
#' Divides result by the total branch weights. Default: `TRUE`
#'
#'
#' @param delta For numeric metadata, report the absolute difference in values
#' for the two samples, for instance `2` instead of `"10 vs 12"`.
#' Default: `TRUE`
#'
#' @param rank What rank(s) of taxa to display. E.g. `"Phylum"`,
#' `"Genus"`, `".otu"`, etc. An integer vector can also be
#' given, where `1` is the highest rank, `2` is the second
#' highest, `-1` is the lowest rank, `-2` is the second
#' lowest, and `0` is the OTU "rank". Run `biom$ranks` to
#' see all options for a given rbiom object. Default: `-1`.
#'
#' @param lineage Include all ranks in the name of the taxa. For instance,
#' setting to `TRUE` will produce
#' `Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales`.
#' Otherwise the taxa name will simply be `Coriobacteriales`. You
#' want to set this to TRUE when `unc = "asis"` and you have taxa
#' names (such as \emph{Incertae_Sedis}) that map to multiple higher
#' level ranks. Default: `FALSE`
#'
#' @param unc How to handle unclassified, uncultured, and similarly ambiguous
#' taxa names. Options are:
#' \describe{
#' \item{`"singly"` - }{ Replaces them with the OTU name. }
#' \item{`"grouped"` - }{ Replaces them with a higher rank's name. }
#' \item{`"drop"` - }{ Excludes them from the result. }
#' \item{`"asis"` - }{ To not check/modify any taxa names. }
#' }
#' Abbreviations are allowed. Default: `"singly"`
#'
#'
#' @param other Sum all non-itemized taxa into an "Other" taxa. When
#' `FALSE`, only returns taxa matched by the `taxa`
#' argument. Specifying `TRUE` adds "Other" to the returned set.
#' A string can also be given to imply `TRUE`, but with that
#' value as the name to use instead of "Other".
#' Default: `FALSE`
#'
#' @param sparse If `TRUE`, returns a
#' [slam::simple_triplet_matrix()], otherwise returns a
#' normal R matrix object. Default: `FALSE`
#'
#' @param p.top Only display taxa with the most significant differences in
#' abundance. If `p.top` is >= 1, then the `p.top` most
#' significant taxa are displayed. If `p.top` is less than one, all
#' taxa with an adjusted p-value <= `p.top` are displayed.
#' Recommended to be used in combination with the `taxa` parameter
#' to set a lower bound on the mean abundance of considered taxa.
#' Default: `Inf`
#'
#' @param y.transform The transformation to apply to the y-axis. Visualizing
#' differences of both high- and low-abundance taxa is best done with
#' a non-linear axis. Options are:
#' \describe{
#' \item{`"sqrt"` - }{ square-root transformation }
#' \item{`"log1p"` - }{ log(y + 1) transformation }
#' \item{`"none"` - }{ no transformation }
#' }
#' These methods allow visualization of both high- and low-abundance
#' taxa simultaneously, without complaint about 'zero' count
#' observations. Default: `"sqrt"`
#' Use `xaxis.transform` or `yaxis.transform` to pass custom values
#' directly to ggplot2's `scale_*` functions.
#'
#' @param flip Transpose the axes, so that taxa are present as rows instead
#' of columns. Default: `FALSE`
#'
#' @param stripe Shade every other x position. Default: \emph{same as flip}
#'
#' @param ci How to calculate min/max of the \bold{crossbar},
#' \bold{errorbar}, \bold{linerange}, and \bold{pointrange} layers.
#' Options are: `"ci"` (confidence interval), `"range"`,
#' `"sd"` (standard deviation), `"se"` (standard error), and
#' `"mad"` (median absolute deviation).
#' The center mark of \bold{crossbar} and \bold{pointrange} represents
#' the mean, except for `"mad"` in which case it represents the median.
#' Default: `"ci"`
#'
#' @param p.label Minimum adjusted p-value to display on the plot with a
#' bracket.
#' \describe{
#' \item{`p.label = 0.05` - }{ Show p-values that are <= 0.05. }
#' \item{`p.label = 0` - }{ Don't show any p-values on the plot. }
#' \item{`p.label = 1` - }{ Show all p-values on the plot. }
#' }
#' If a numeric vector with more than one value is
#' provided, they will be used as breaks for asterisk notation.
#' Default: `0.05`
#'
#' @param level The confidence level for calculating a confidence interval.
#' Default: `0.95`
#'
#' @param caption Add methodology caption beneath the plot.
#' Default: `TRUE`
#'
#' @param outliers Show boxplot outliers? `TRUE` to always show.
#' `FALSE` to always hide. `NULL` to only hide them when
#' overlaying a dot or strip chart. Default: `NULL`
#'
#' @param xlab.angle Angle of the labels at the bottom of the plot.
#' Options are `"auto"`, `'0'`, `'30'`, and `'90'`.
#' Default: `"auto"`.
#'
#' @param k Number of ordination dimensions to return. Either `2L` or
#' `3L`. Default: `2L`
#'
#' @param split.by Dataset field(s) that the data should be split by prior to
#' any calculations. Must be categorical. Default: `NULL`
#'
#' @param dm A `dist`-class distance matrix, as returned from
#' [bdiv_distmat()] or [stats::dist()]. Required.
#'
#' @param groups A named vector of grouping values. The names should
#' correspond to `attr(dm, 'Labels')`. Values can be either
#' categorical or numeric. Required.
#'
#' @param df The dataset (data.frame or tibble object). "Dataset fields"
#' mentioned below should match column names in `df`. Required.
#'
#' @param regr Dataset field with the x-axis (independent; predictive)
#' values. Must be numeric. Default: `NULL`
#'
#' @param resp Dataset field with the y-axis (dependent; response) values,
#' such as taxa abundance or alpha diversity.
#' Default: `attr(df, 'response')`
#'
#' @param stat.by Dataset field with the statistical groups. Must be
#' categorical. Default: `NULL`
#'
#' @param color.by Dataset field with the group to color by. Must be
#' categorical. Default: `stat.by`
#'
#' @param shape.by Dataset field with the group for shapes. Must be
#' categorical. Default: `stat.by`
#'
#' @param facet.by Dataset field(s) to use for faceting. Must be categorical.
#' Default: `NULL`
#'
#' @param colors How to color the groups. Options are:
#' \describe{
#' \item{`TRUE` - }{ Automatically select colorblind-friendly colors. }
#' \item{`FALSE` or `NULL` - }{ Don't use colors. }
#' \item{a palette name - }{ Auto-select colors from this set. E.g. `"okabe"` }
#' \item{character vector - }{ Custom colors to use. E.g. `c("red", "#00FF00")` }
#' \item{named character vector - }{ Explicit mapping. E.g. `c(Male = "blue", Female = "red")` }
#' }
#' See "Aesthetics" section below for additional information.
#' Default: `TRUE`
#'
#' @param shapes Shapes for each group.
#' Options are similar to `colors`'s: `TRUE`, `FALSE`, `NULL`, shape
#' names (typically integers 0 - 17), or a named vector mapping
#' groups to specific shape names.
#' See "Aesthetics" section below for additional information.
#' Default: `TRUE`
#'
#' @param patterns Patterns for each group.
#' Options are similar to `colors`'s: `TRUE`, `FALSE`, `NULL`, pattern
#' names (`"brick"`, `"chevron"`, `"fish"`, `"grid"`, etc), or a named
#' vector mapping groups to specific pattern names.
#' See "Aesthetics" section below for additional information.
#' Default: `FALSE`
#'
#' @param test Method for computing p-values: `'wilcox'`, `'kruskal'`,
#' `'emmeans'`, or `'emtrends'`. Default: `'emmeans'`
#'
#' @param fit How to fit the trendline. `'lm'`, `'log'`, or `'gam'`.
#' Default: `'gam'`
#'
#' @param at Position(s) along the x-axis where the means or slopes should be
#' evaluated. Default: `NULL`, which samples 100 evenly spaced positions
#' and selects the position where the p-value is most significant.
#'
#' @param alt Alternative hypothesis direction. Options are `'!='`
#' (two-sided; not equal to `mu`), `'<'` (less than `mu`), or `'>'`
#' (greater than `mu`). Default: `'!='`
#'
#' @param mu Reference value to test against. Default: `0`
#'
#' @param check Generate additional plots to aid in assessing data normality.
#' Default: `FALSE`
#'
#' @param within,between Dataset field(s) for intra- or inter- sample
#' comparisons. Alternatively, dataset field names given elsewhere can
#' be prefixed with `'=='` or `'!='` to assign them to `within` or
#' `between`, respectively. Default: `NULL`
#'
#' @param seed Random seed for permutations. Must be a non-negative integer.
#' Default: `0`
#'
#' @param cpus The number of CPUs to use. Set to `NULL` to use all available,
#' or to `1` to disable parallel processing. Default: `NULL`
#'
#' @param permutations Number of random permutations to use.
#' Default: `999`
#'
#' @param p.adj Method to use for multiple comparisons adjustment of
#' p-values. Run `p.adjust.methods` for a list of available
#' options. Default: `"fdr"`
#'
#' @param depths Rarefaction depths to show in the plot, or `NULL` to
#' auto-select. Default: `NULL`
#'
#' @param rline Where to draw a horizontal line on the plot, intended to show
#' a particular rarefaction depth. Set to `TRUE` to show an
#' auto-selected rarefaction depth or `FALSE` to not show a line.
#' Default: `NULL`
#'
#' @param clone Create a copy of `biom` before modifying. If `FALSE`, `biom`
#' is modified in place as a side-effect. See [speed ups][speed] for
#' use cases. Default: `TRUE`
#'
#' @param labels Show sample names under each bar. Default: `FALSE`
#'
#' @param transform Transformation to apply. Options are:
#' `c("none", "rank", "log", "log1p", "sqrt", "percent")`. `"rank"` is
#' useful for correcting for non-normally distributions before applying
#' regression statistics. Default: `"none"`
#'
#' @param ties When `transform="rank"`, how to rank identical values.
#' Options are: `c("average", "first", "last", "random", "max", "min")`.
#' See `rank()` for details. Default: `"random"`
#'
NULL
# biom - rbiom object ====
#' documentation_biom.rbiom
#'
#' @name documentation_biom.rbiom
#' @keywords internal
#'
#' @param biom An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#'
#' @param .data An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#'
#' @param x An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#'
#' @param object An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#'
#' @param data An [rbiom object][rbiom_objects], such as from [as_rbiom()].
#'
NULL
# return - biom ====
#' documentation_return.biom
#'
#' @name documentation_return.biom
#' @keywords internal
#'
#' @return An [rbiom object][rbiom_objects].
#'
NULL
# rank - NULL ====
#' documentation_rank.NULL
#'
#' @name documentation_rank.NULL
#' @keywords internal
#'
#' @param rank What rank(s) of taxa to compute biplot coordinates and
#' statistics for, or `NULL` to disable. E.g. `"Phylum"`,
#' `"Genus"`, `".otu"`, etc. An integer vector can also be
#' given, where `1` is the highest rank, `2` is the second
#' highest, `-1` is the lowest rank, `-2` is the second
#' lowest, and `0` is the OTU "rank". Run `biom$ranks` to
#' see all options for a given rbiom object. Default: `NULL`.
#'
NULL
# rank - 2 ====
#' documentation_rank.2
#'
#' @name documentation_rank.2
#' @keywords internal
#'
#' @param rank What rank(s) of taxa to compute biplot coordinates and
#' statistics for, or `NULL` to disable. E.g. `"Phylum"`,
#' `"Genus"`, `".otu"`, etc. An integer vector can also be
#' given, where `1` is the highest rank, `2` is the second
#' highest, `-1` is the lowest rank, `-2` is the second
#' lowest, and `0` is the OTU "rank". Run `biom$ranks` to
#' see all options for a given rbiom object. Default: `2`.
#'
NULL
# clusters ====
#' documentation_clusters
#'
#' @name documentation_clusters
#' @keywords internal
#'
#' @param k Number of clusters. Default: `5L`
#'
#' @param rank Which taxa rank to use. E.g. `"Phylum"`,
#' `"Genus"`, `".otu"`, etc. An integer can also be
#' given, where `1` is the highest rank, `2` is the second
#' highest, `-1` is the lowest rank, `-2` is the second
#' lowest, and `0` is the OTU "rank". Run `biom$ranks` to
#' see all options for a given rbiom object. Default: `.otu`.
#'
#' @return A numeric factor assigning samples to clusters.
#'
NULL
# taxa - 4 ====
#' documentation_taxa.4
#'
#' @name documentation_taxa.4
#' @keywords internal
#'
#' @param taxa Which taxa to display. An integer value will show the top n
#' most abundant taxa. A value 0 <= n < 1 will show any taxa with that
#' mean abundance or greater (e.g. `0.1` implies >= 10%). A
#' character vector of taxa names will show only those named taxa.
#' Default: `4`.
#'
NULL
# cmp ====
#' documentation_cmp
#'
#' @name documentation_cmp
#' @keywords internal
#'
#' @section Metadata Comparisons:
#'
#' Prefix metadata fields with `==` or `!=` to limit comparisons to within or
#' between groups, respectively. For example, `stat.by = '==Sex'` will
#' run calculations only for intra-group comparisons, returning "Male" and
#' "Female", but NOT "Female vs Male". Similarly, setting
#' `stat.by = '!=Body Site'` will only show the inter-group comparisons, such
#' as "Saliva vs Stool", "Anterior nares vs Buccal mucosa", and so on.
#'
#' The same effect can be achieved by using the `within` and `between`
#' parameters. `stat.by = '==Sex'` is equivalent to
#' `stat.by = 'Sex', within = 'Sex'`.
#'
NULL
# heatmap ====
#' documentation_heatmap
#'
#' @name documentation_heatmap
#' @keywords internal
#'
#' @inherit documentation_plot_return return
#'
#' @param grid Color palette name, or a list with entries for `label`,
#' `colors`, `range`, `bins`, `na.color`, and/or
#' `guide`. See the Track Definitions section for details.
#' Default: `list(label = "Grid Value", colors = "imola")`
#'
#' @param label Label the matrix rows and columns. You can supply a list
#' or logical vector of length two to control row labels and column
#' labels separately, for example
#' `label = c(rows = TRUE, cols = FALSE)`, or simply
#' `label = c(TRUE, FALSE)`. Other valid options are `"rows"`,
#' `"cols"`, `"both"`, `"bottom"`, `"right"`,
#' and `"none"`.
#' Default: `TRUE`
#'
#' @param label_size The font size to use for the row and column labels. You
#' can supply a numeric vector of length two to control row label sizes
#' and column label sizes separately, for example
#' `c(rows = 20, cols = 8)`, or simply `c(20, 8)`.
#' Default: `NULL`, which computes:
#' `pmax(8, pmin(20, 100 / dim(mtx)))`
#'
#' @param rescale Rescale rows or columns to all have a common min/max.
#' Options: `"none"`, `"rows"`, or `"cols"`.
#' Default: `"none"`
#'
#' @param trees Draw a dendrogram for rows (left) and columns (top). You can
#' supply a list or logical vector of length two to control the row tree
#' and column tree separately, for example
#' `trees = c(rows = TRUE, cols = FALSE)`,
#' or simply `trees = c(TRUE, FALSE)`.
#' Other valid options are `"rows"`, `"cols"`, `"both"`,
#' `"left"`, `"top"`, and `"none"`.
#' Default: `TRUE`
#'
#' @param clust Clustering algorithm for reordering the rows and columns by
#' similarity. You can supply a list or character vector of length two to
#' control the row and column clustering separately, for example
#' `clust = c(rows = "complete", cols = NA)`, or simply
#' `clust = c("complete", NA)`. Options are:
#' \describe{
#' \item{`FALSE` or `NA` - }{ Disable reordering. }
#' \item{An `hclust` class object}{ E.g. from [stats::hclust()]. }
#' \item{A method name - }{ `"ward.D"`,
#' `"ward.D2"`, `"single"`, `"complete"`,
#' `"average"`, `"mcquitty"`, `"median"`, or
#' `"centroid"`. }
#' }
#' Default: `"complete"`
#'
#' @param dist Distance algorithm to use when reordering the rows and columns
#' by similarity. You can supply a list or character vector of length
#' two to control the row and column clustering separately, for example
#' `dist = c(rows = "euclidean", cols = "maximum")`, or simply
#' `dist = c("euclidean", "maximum")`. Options are:
#' \describe{
#' \item{A `dist` class object}{ E.g. from [stats::dist()] or [bdiv_distmat()]. }
#' \item{A method name - }{ `"euclidean"`,
#' `"maximum"`, `"manhattan"`, `"canberra"`,
#' `"binary"`, or `"minkowski"`. }
#' }
#' Default: `"euclidean"`
#'
#' @param tree_height,track_height The height of the dendrogram or annotation
#' tracks as a percentage of the overall grid size. Use a numeric vector
#' of length two to assign `c(top, left)` independently.
#' Default: `10` (10% of the grid's height)
#'
#' @param asp Aspect ratio (height/width) for entire grid.
#' Default: `1` (square)
#'
#' @param legend Where to place the legend. Options are: `"right"` or
#' `"bottom"`. Default: `"right"`
#'
#' @param title Plot title. Set to `TRUE` for a default title, `NULL` for
#' no title, or any character string. Default: `TRUE`
#'
#' @param ... Additional arguments to pass on to ggplot2::theme().
#'
NULL
# dist test ====
#' documentation_dist_test
#'
#' @name documentation_dist_test
#' @keywords internal
#'
#' @param stat.by The categorical or numeric metadata field over which
#' statistics should be calculated. Required.
#'
#' @param test Permutational test for accessing significance. Options are:
#' \describe{
#' \item{`"adonis2"` - }{ Permutational MANOVA; [vegan::adonis2()]. }
#' \item{`"mrpp"` - }{ Multiple response permutation procedure; [vegan::mrpp()]. }
#' \item{`"none"` - }{ Don't run any statistics. }
#' }
#' Abbreviations are allowed. Default: `"adonis2"`
#'
#'
NULL
# plot - return ====
#' documentation_plot_return
#'
#' @name documentation_plot_return
#' @keywords internal
#'
#' @return A `ggplot2` plot. The computed data points and ggplot
#' command are available as `$data` and `$code`,
#' respectively.
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.