Nothing
#' Speed Ups.
#'
#' When working with very large datasets, you can make use of these tips and
#' tricks to speed up operations on rbiom objects.
#'
#' @name speed
#' @keywords internal
#'
#'
#' @section Skip Cloning:
#'
#' Functions that modify rbiom objects, like [subset()] and [rarefy()], will
#' automatically clone the object before modifying it. This is to make these
#' functions behave as most R users would expect - but at a performance trade
#' off.
#'
#' Rather than:
#' ```r
#' biom <- subset(biom, ...)
#' biom <- rarefy(biom)
#' ```
#'
#' Modify `biom` in place like this:
#' ```r
#' subset(biom, clone = FALSE, ...)
#' rarefy(biom, clone = FALSE)
#'
#' # Or:
#' biom$metadata %<>% subset(...)
#' biom$counts %<>% rarefy_cols()
#' ```
#'
#'
#'
#' @section Drop Components:
#'
#' ## Sequences
#'
#' Reference sequences for OTUs will be imported along with the rest of your
#' dataset and stored in `$sequences`. However, rbiom doesn't currently use
#' these sequences for anything (except writing them back out with
#' [write_biom()] or [write_fasta()]).
#'
#' You can delete them from your rbiom object with:
#'
#' ```r
#' biom$sequences <- NULL
#' ```
#'
#'
#' ## Tree
#'
#' The phylogenetic reference tree for OTUs is only used for calculating
#' UniFrac distances. If you aren't using UniFrac, the tree can be dropped
#' from the rbiom object with:
#'
#' ```r
#' biom$tree <- NULL
#' ```
#'
#' Alternatively, you can store the tree separately from the rbiom object and
#' provide it to just the functions that use it. For example:
#'
#' ```r
#' tree <- biom$tree
#' biom$tree <- NULL
#' dm <- bdiv_distmat(biom, 'unifrac', tree = tree)
#' ```
#'
#'
#'
#' @section Increase Caching:
#'
#' Caching is enabled by default - up to 20 MB per R session.
#'
#' For large datasets, increasing the cache size can help. The size is
#' specified in bytes by an R option or environment variable.
#'
#' ```r
#' options(rbiom.cache_size=200 * 1024 ^ 2) # 200 MB
#' Sys.setenv(RBIOM_CACHE_SIZE=1024 ^ 3) # 1 GB
#' ```
#'
#' You can also specify a cache directory where results can be preserved from
#' one R session to the next.
#'
#' ```r
#' options(rbiom.cache_dir=tools::R_user_dir("rbiom", "cache"))
#' Sys.setenv(RBIOM_CACHE_DIR="~/rbiom_cache")
#' ```
#'
#' Other quick notes about caching:
#'
#' * Setting the cache directory to `"FALSE"` will disable caching.
#' * R options will override environment variables.
#' * The key hash algorithm can be set with `options(rbiom.cache_hash=rlang::hash)`.
#'
#'
#'
#' @section Summary Layers:
#'
#' The figure-generating functions allow you to display every data point.
#' However, when you have thousands of data points, rendering every single one
#' can be slow. Instead, set the `layers` parameter to use other options.
#'
#'
#' ```r
#' adiv_boxplot(biom, layers = "bl") # bar, linerange
#' adiv_corrplot(biom, layers = "tc") # trend, confidence
#' bdiv_ord_plot(biom, layers = "e") # ellipse
#' ```
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.