R/rcdk.R

Defines functions generate.2d.coordinates set.title get.title get.atom.count get.largest.component is.connected is.neutral do.isotopes do.aromaticity get.bonds get.atoms convert.implicit.to.explicit get.total.formal.charge get.total.charge get.natural.mass get.exact.mass get.total.hydrogen.count remove.hydrogens cdk.version .onLoad .javalist.to.rlist .trim.whitespace .check.class get.chem.object.builder

Documented in cdk.version convert.implicit.to.explicit do.aromaticity do.isotopes generate.2d.coordinates get.atom.count get.atoms get.bonds get.chem.object.builder get.exact.mass get.largest.component get.natural.mass get.title get.total.charge get.total.formal.charge get.total.hydrogen.count is.connected is.neutral remove.hydrogens set.title

.packageName <- "rcdk"

#' Get the default chemical object builder.
#' 
#' The CDK employs a builder design pattern to construct
#' instances of new chemical objects (e.g., atoms, bonds, parsers
#' and so on). Many methods require an instance of a builder 
#' object to function. While most functions in this package handle
#' this internally, it is useful to be able to get an instance of
#' a builder object when directly working with the CDK API via
#' `rJava`.
#' 
#' This method returns an instance of the \href{https://cdk.github.io/cdk/2.5/docs/api/org/openscience/cdk/silent/SilentChemObjectBuilder.html}{SilentChemObjectBuilder}. 
#' Note that this is a static object that is created at package load time, 
#' and the same instance is returned whenever this function is called.
#' 
#' @return An instance of \href{https://cdk.github.io/cdk/2.5/docs/api/org/openscience/cdk/silent/SilentChemObjectBuilder.html}{SilentChemObjectBuilder}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
get.chem.object.builder <- function() {
  return(get("dcob", envir = .rcdk.GlobalEnv))
}

.check.class <- function(obj, klass) {
  !is.null(attr(obj, 'jclass')) && attr(obj, "jclass") == klass
}

.trim.whitespace <- function(x) {
  x <- gsub('^[[:space:]]+', '', x)
  gsub('[[:space:]]+$', '',x)
}

.javalist.to.rlist <- function(l) {
  size <- .jcall(l, "I", "size")
  if (size == 0) return(list())
  rl <- list()
  for (i in 1:size)
    rl[[i]] <- .jcall(l, "Ljava/lang/Object;", "get", as.integer(i-1))
  return(rl)
}

#'
#' @import fingerprint
#' @import methods
#' @import rJava
#' @import png
#' @import iterators
#' @import itertools
#' @import rcdklibs
#'
.onLoad <- function(lib, pkg) {
  dlp<-Sys.getenv("DYLD_LIBRARY_PATH")
  if (dlp!="") { # for Mac OS X we need to remove X11 from lib-path
    Sys.setenv("DYLD_LIBRARY_PATH"=sub("/usr/X11R6/lib","",dlp))
  }

  Sys.setenv(NOAWT=1)
  
  jar.rcdk <- paste(lib,pkg,"cont","rcdk.jar",sep=.Platform$file.sep)
  jar.png <- paste(lib,pkg,"cont","com.objectplanet.image.PngEncoder.jar",sep=.Platform$file.sep)
  .jinit(classpath=c(jar.rcdk,jar.png), parameters="-Djava.awt.headless=true")
  
  .jcall("java/lang/System", "S", "setProperty", "java.awt.headless", "true")
  
  # check Java Version 
  jv <- .jcall("java/lang/System", "S", "getProperty", "java.runtime.version")
  if(substr(jv, 1L, 2L) == "1.") {
    jvn <- as.numeric(paste0(strsplit(jv, "[.]")[[1L]][1:2], collapse = "."))
    if(jvn < 1.8) stop("Java >= 8 is needed for this package but not available")
  }

  ## generate some Java objects which get reused, so as to avoid repeated .jnew()
  nRule <- .jnew("org/openscience/cdk/formula/rules/NitrogenRule");
  rdbeRule <- .jnew("org/openscience/cdk/formula/rules/RDBERule");
  assign(".rcdk.GlobalEnv", new.env(parent = emptyenv()), envir = topenv())
  assign("nRule", nRule, envir = .rcdk.GlobalEnv)
  assign("rdbeRule", rdbeRule, envir = .rcdk.GlobalEnv)
  assign("dcob", .jcall("org/openscience/cdk/silent/SilentChemObjectBuilder",
                        "Lorg/openscience/cdk/interfaces/IChemObjectBuilder;",
                        "getInstance"), envir = .rcdk.GlobalEnv)
  assign("mfManipulator", .jnew("org/openscience/cdk/tools/manipulator/MolecularFormulaManipulator"), envir = .rcdk.GlobalEnv)
  
  # Extract the bond order enums so we can return them without going through
  # Java each time we want one
  assign("BOND_ORDER_SINGLE", J("org.openscience.cdk.interfaces.IBond")$Order$SINGLE,
         envir = .rcdk.GlobalEnv)
  assign("BOND_ORDER_DOUBLE", J("org.openscience.cdk.interfaces.IBond")$Order$DOUBLE,
         envir = .rcdk.GlobalEnv)
  assign("BOND_ORDER_TRIPLE", J("org.openscience.cdk.interfaces.IBond")$Order$TRIPLE,
         envir = .rcdk.GlobalEnv)
  assign("BOND_ORDER_UNSET", J("org.openscience.cdk.interfaces.IBond")$Order$UNSET,
         envir = .rcdk.GlobalEnv)
  assign("BOND_ORDER_QUADRUPLE", J("org.openscience.cdk.interfaces.IBond")$Order$QUADRUPLE,
         envir = .rcdk.GlobalEnv)
  assign("BOND_ORDER_QUINTUPLE", J("org.openscience.cdk.interfaces.IBond")$Order$QUINTUPLE,
         envir = .rcdk.GlobalEnv)
  assign("BOND_ORDER_SEXTUPLE", J("org.openscience.cdk.interfaces.IBond")$Order$SEXTUPLE,
         envir = .rcdk.GlobalEnv)
}

#' Get the current CDK version used in the package.
#' 
#' @return Returns a character containing the version of the CDK used in this package
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
cdk.version <- function() {
  .jcall("org.openscience.cdk.CDK", "S", "getVersion")
}

#' Remove explicit hydrogens.
#' 
#' Create an copy of the original structure with explicit hydrogens removed. 
#' Stereochemistry is updated but up and down bonds in a depiction may need 
#' to be recalculated. This can also be useful for descriptor calculations.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return A copy of the original molecule, with explicit hydrogens removed
#' @seealso \code{\link{get.hydrogen.count}}, \code{\link{get.total.hydrogen.count}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
remove.hydrogens <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  newmol <- .jcall('org/openscience/cdk/tools/manipulator/AtomContainerManipulator',
                   'Lorg/openscience/cdk/interfaces/IAtomContainer;',
                   'removeHydrogens',
                   mol);
  newmol
}

#' Get total number of implicit hydrogens in the molecule.
#' 
#' Counts the number of hydrogens on the provided molecule. As this method 
#' will sum all implicit hydrogens on each atom it is important to ensure 
#' the molecule has already been configured (and thus each atom has an 
#' implicit hydrogen count). 
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return An integer representing the total number of implicit hydrogens
#' @seealso \code{\link{get.hydrogen.count}}, \code{\link{remove.hydrogens}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
get.total.hydrogen.count <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  .jcall('org/openscience/cdk/tools/manipulator/AtomContainerManipulator',
         'I',
         'getTotalHydrogenCount',
         mol);
}

#' get.exact.mass
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @export
get.exact.mass <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  
  formulaJ <- .jcall('org/openscience/cdk/tools/manipulator/MolecularFormulaManipulator',
                     "Lorg/openscience/cdk/interfaces/IMolecularFormula;",
                     "getMolecularFormula",
                     mol,
                     use.true.class=FALSE);
  
  
  ret <- .jcall('org/openscience/cdk/tools/manipulator/MolecularFormulaManipulator',
                'D',
                'getTotalExactMass',
                formulaJ,
                check=FALSE)
  
  ex <- .jgetEx(clear=TRUE)
  
  
  if (is.null(ex)) return(ret)
  else{
    print(ex)
    stop("Couldn't get exact mass. Maybe you have not performed aromaticity, atom type or isotope configuration?")
  }
}
  

#' get.natural.mass
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @export
get.natural.mass <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  ret <- .jcall('org/openscience/cdk/tools/manipulator/AtomContainerManipulator',
                'D',
                'getNaturalExactMass',
                mol,
                check=FALSE)
  ex <- .jgetEx(clear=TRUE)
  if (is.null(ex)) return(ret)
  else{
    print(ex)
    stop("Couldn't get natural mass. Maybe you have not performed aromaticity, atom type or isotope configuration?")
  }  
}

#' get.total.charge
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @export
get.total.charge <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  ## check to see if we have partial charges
  atoms <- get.atoms(mol)
  pcharges <- unlist(lapply(atoms, get.charge))

  ## If any are null, partial charges were not set, so
  ## just return the total formal charge
  if (any(is.null(pcharges))) return(get.total.formal.charge(mol))
  else {
    .jcall('org/openscience/cdk/tools/manipulator/AtomContainerManipulator',
           'D',
           'getTotalCharge',
           mol);
  }
}

#' get.total.formal.charge
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @export
get.total.formal.charge <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  .jcall('org/openscience/cdk/tools/manipulator/AtomContainerManipulator',
         'I',
         'getTotalFormalCharge',
         mol);
}

#' Convert implicit hydrogens to explicit.
#' 
#' In some cases, a molecule may not have any hydrogens (such as when read
#' in from an MDL MOL file that did not have hydrogens or SMILES with no
#' explicit hydrogens). In such cases, this method
#' will add implicit hydrogens and then convert them to explicit ones. The 
#' newly added H's will not have any 2D or 3D coordinates associated with them.
#' Ensure that the molecule has been typed beforehand.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @seealso \code{\link{get.hydrogen.count}}, \code{\link{remove.hydrogens}}, \code{\link{set.atom.types}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
convert.implicit.to.explicit <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")

    if (any(is.null(unlist(lapply(get.atoms(mol), .jcall, returnSig = "Ljava/lang/Integer;", method="getImplicitHydrogenCount"))))) {
    ## add them in
    dcob <- get.chem.object.builder()
    hadder <- .jcall("org/openscience/cdk/tools/CDKHydrogenAdder", "Lorg/openscience/cdk/tools/CDKHydrogenAdder;",
                     "getInstance", dcob)
    .jcall(hadder, "V", "addImplicitHydrogens", mol)
  }
  .jcall('org/openscience/cdk/tools/manipulator/AtomContainerManipulator', 'V', 'convertImplicitToExplicitHydrogens', mol)
}


#' Get the atoms from a molecule or bond.
#' 
#' @param object A `jobjRef` representing either a molecule (`IAtomContainer`) or 
#' bond (`IBond`) object.
#' @return A list of `jobjRef` representing the `IAtom` objects in the molecule or bond
#' @seealso \code{\link{get.bonds}}, \code{\link{get.connected.atoms}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
get.atoms <- function(object) {
  if (is.null(attr(object, 'jclass')))
    stop("object must be of class IAtomContainer or IObject or IBond")
  
  if (attr(object, 'jclass') != "org/openscience/cdk/interfaces/IAtomContainer" &&
      attr(object, 'jclass') != "org/openscience/cdk/interfaces/IObject" &&
      attr(object, 'jclass') != "org/openscience/cdk/interfaces/IBond")
    stop("object must be of class IAtomContainer or IObject or IBond")

  natom <- .jcall(object, "I", "getAtomCount")
  atoms <- list()
  for (i in 0:(natom-1))
    atoms[[i+1]] <- .jcall(object, "Lorg/openscience/cdk/interfaces/IAtom;", "getAtom", as.integer(i))
  atoms
}

#' Get the bonds in a molecule.
#' 
#' @param mol A `jobjRef` representing the molecule (`IAtomContainer`) object.
#' @return A list of `jobjRef` representing the bonds (`IBond`) objects in the molecule
#' @seealso \code{\link{get.atoms}}, \code{\link{get.connected.atoms}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
get.bonds <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  nbond <- .jcall(mol, "I", "getBondCount")
  bonds <- list()
  for (i in 0:(nbond-1))
    bonds[[i+1]] <- .jcall(mol, "Lorg/openscience/cdk/interfaces/IBond;", "getBond", as.integer(i))
  bonds
}

#' do.aromaticity
#' 
#' detect aromaticity of an input compound
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @export do.aromaticity
do.aromaticity <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  model <- .jcall("org/openscience/cdk/aromaticity/ElectronDonation",
                  "Lorg/openscience/cdk/aromaticity/ElectronDonation;",
                  "daylight")
  cycles.all <- .jcall("org/openscience/cdk/graph/Cycles", 
                      "Lorg/openscience/cdk/graph/CycleFinder;",
                      "all")
  cycles.6 <- .jcall("org.openscience.cdk.graph.Cycles", 
                    "Lorg/openscience/cdk/graph/CycleFinder;",
                    "all", as.integer(6))
  cycles <- .jcall("org.openscience.cdk.graph.Cycles", 
                  "Lorg/openscience/cdk/graph/CycleFinder;",
                  "or", cycles.all, cycles.6)
  aromaticity <- .jnew("org/openscience/cdk.aromaticity/Aromaticity",
                       model, cycles)
  .jcall(aromaticity, "Z", "apply", mol)
}

#' do.isotopes
#' 
#' configure isotopes
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @export do.isotopes
do.isotopes <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  ifac <- .jcall('org.openscience.cdk.config.Isotopes',
                 'Lorg/openscience/cdk/config/Isotopes;',
                 'getInstance')
  .jcall(ifac, 'V', 'configureAtoms', mol)
}

#' Tests whether the molecule is neutral.
#' 
#' The test checks whether all atoms in the molecule have a formal charge of 0.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return `TRUE` if molecule is neutral, `FALSE` otherwise
#' @aliases charge
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
is.neutral <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  atoms <- get.atoms(mol)
  fc <- unlist(lapply(atoms, get.formal.charge))
  return(all(fc == 0))
}

#' Tests whether the molecule is fully connected.
#' 
#' A single molecule will be represented as a 
#' \href{https://en.wikipedia.org/wiki/Complete_graph}{complete} graph. 
#' In some cases, such as for molecules in salt form, or after certain 
#' operations such as bond splits, the molecular graph may contained 
#' \href{http://mathworld.wolfram.com/DisconnectedGraph.html}{disconnected components}.
#' This method can be used to tested whether the molecule is complete (i.e. fully
#' connected).
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return `TRUE` if molecule is complete, `FALSE` otherwise
#' @seealso \code{\link{get.largest.component}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
#' @examples 
#' m <- parse.smiles("CC.CCCCCC.CCCC")[[1]]
#' is.connected(m)
is.connected <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  .jcall("org.openscience.cdk.graph.ConnectivityChecker",
         "Z", "isConnected", mol)
}

#' Gets the largest component in a disconnected molecular graph.
#' 
#' A molecule may be represented as a 
#' \href{http://mathworld.wolfram.com/DisconnectedGraph.html}{disconnected graph}, such as
#' when read in as a salt form. This method will return the larges connected component
#' or if there is only a single component (i.e., the molecular graph is 
#' \href{https://en.wikipedia.org/wiki/Complete_graph}{complete} or fully connected), that
#' component is returned.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return The largest component as an `IAtomContainer` object or else the input molecule itself
#' @seealso \code{\link{is.connected}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
#' @examples 
#' m <- parse.smiles("CC.CCCCCC.CCCC")[[1]]
#' largest <- get.largest.component(m)
#' length(get.atoms(largest)) == 6
get.largest.component <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  isConnected <- .jcall("org.openscience.cdk.graph.ConnectivityChecker",
                        "Z", "isConnected", mol)
  if (isConnected) return(mol)
  molSet <- .jcall("org.openscience.cdk.graph.ConnectivityChecker",
                   "Lorg/openscience/cdk/interfaces/IAtomContainerSet;",
                   "partitionIntoMolecules", mol)
  ncomp <- .jcall(molSet, "I", "getAtomContainerCount")
  max.idx <- -1
  max.atom.count <- -1
  for (i in seq_len(ncomp)) {
    m <- .jcall(molSet, "Lorg/openscience/cdk/interfaces/IAtomContainer;",
                "getAtomContainer", as.integer(i-1))
    natom <- .jcall(m, "I", "getAtomCount")
    if (natom > max.atom.count) {
      max.idx <- i
      max.atom.count <- natom
    }
  }
  m <- .jcall(molSet, "Lorg/openscience/cdk/interfaces/IAtomContainer;",
              "getAtomContainer", as.integer(max.idx-1))
  .jcast(m, "org/openscience/cdk/interfaces/IAtomContainer")
}

#' Get the number of atoms in the molecule.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return An integer representing the number of atoms in the molecule
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
get.atom.count <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  .jcall(mol, "I", "getAtomCount")
}

#' Get the title of the molecule.
#' 
#' Some molecules may not have a title (such as when parsing in a SMILES
#' with not title).
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return A character string with the title, `NA` is no title is specified
#' @seealso \code{\link{set.title}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
get.title <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  get.property(mol, "cdk:Title")
}

#' Set the title of the molecule.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @param title The title of the molecule as a character string. This will overwrite
#' any pre-existing title. The default value is an empty string.
#' @seealso \code{\link{get.title}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
set.title <- function(mol, title = "") {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  set.property(mol, "cdk:Title", title)
}

#' Generate 2D coordinates for a molecule.
#' 
#' Some file formats such as SMILES do not support 2D (or 3D) coordinates
#' for the atoms. Other formats such as SD or MOL have support for coordinates
#' but may not include them. This method will generate reasonable 2D coordinates 
#' based purely on connectivity information, overwriting
#' any existing coordinates if present. 
#' 
#' Note that when depicting a molecule (\code{\link{view.molecule.2d}}), 2D coordinates
#' are generated, but since it does not modify the input molecule, we do not have access
#' to the generated coordinates.
#' 
#' @param mol The molecule to query. Should be a `jobjRef` representing an `IAtomContainer`
#' @return The input molecule, with 2D coordinates added
#' @seealso \code{\link{get.point2d}}, \code{\link{view.molecule.2d}}
#' @export
#' @author Rajarshi Guha (\email{rajarshi.guha@@gmail.com})
generate.2d.coordinates <- function(mol) {
  if (!.check.class(mol, "org/openscience/cdk/interfaces/IAtomContainer"))
    stop("molecule must be of class IAtomContainer")
  
  .jcall('org/guha/rcdk/util/Misc', 'Lorg/openscience/cdk/interfaces/IAtomContainer;',
         'getMoleculeWithCoordinates', mol)
}

Try the rcdk package in your browser

Any scripts or data that you put into this service are public.

rcdk documentation built on July 9, 2023, 7:27 p.m.