Nothing
#' @title Pairwise two-sample independence tests with matrix output
#'
#' @description Conducts pairwise two-sample independence tests across groups.
#'
#' @param formula A formula indicating the measurement variable and
#' the grouping variable. e.g. y ~ group.
#' @param data The data frame to use.
#' @param x The response variable as a vector.
#' @param g The grouping variable as a vector.
#' @param method The p-value adjustment method to use for multiple tests.
#' See \code{stats::p.adjust}.
#' @param ... Additional arguments passed to
#' \code{coin::independence_test}.
#'
#' @details The input should include either \code{formula} and \code{data};
#' or \code{x}, and \code{g}.
#'
#' This function is a wrapper for \code{coin::independence_test},
#' passing pairwise groups to the function. It's critical to read
#' and understand the documentation for this function to understand
#' its use and options.
#'
#' For some options for common tests, see Horthorn et al., 2008.
#'
#' @note The parsing of the formula is simplistic.
#' The first variable on the
#' left side is used as the measurement variable.
#' The first variable on the
#' right side is used for the grouping variable.
#'
#' @author Salvatore Mangiafico, \email{mangiafico@njaes.rutgers.edu}
#'
#' @references \url{https://rcompanion.org/handbook/K_02.html}
#'
#' Hothorn, T., K. Hornik, M.A. van de Wiel, and A. Zeileis. 2008.
#' Implementing a Class of Permutation Tests: The coin Package.
#' Journal of Statistical Software, 28(8), 1–23.
#'
#' @seealso \code{\link{pairwisePermutationTest}}
#'
#' @concept post-hoc
#' @concept permutation test
#'
#' @return A list consisting of:
#' A matrix of p-values;
#' the p-value adjustment method;
#' a matrix of adjusted p-values.
#'
#' @examples
#' ### Fisher-Pitman test
#'
#' data(BrendonSmall)
#'
#' library(coin)
#'
#' independence_test(Sodium ~ Instructor, data = BrendonSmall,
#' teststat = "quadratic")
#'
#' PT = pairwisePermutationMatrix(Sodium ~ Instructor,
#' data = BrendonSmall,
#' teststat = "quadratic",
#' method = "fdr")
#' PT
#'
#' PA = PT$Adjusted
#' library(multcompView)
#' multcompLetters(PA,
#' compare="<",
#' threshold=0.05,
#' Letters=letters)
#'
#' @importFrom stats p.adjust
#' @importFrom coin independence_test statistic
#'
#' @export
pairwisePermutationMatrix =
function(formula=NULL, data=NULL,
x=NULL, g=NULL,
method = "fdr", ...)
{
if(!is.null(formula)){
x = eval(parse(text=paste0("data","$",all.vars(formula[[2]])[1])))
g = eval(parse(text=paste0("data","$",all.vars(formula[[3]])[1])))
}
if(!is.factor(g)){g=factor(g)}
n = length(levels(g))
N = n*n
d = data.frame(x = x, g = g)
Y = matrix(rep(NA_real_, N),ncol=n)
rownames(Y)=levels(g)
colnames(Y)=levels(g)
Z = matrix(rep(NA_real_, N),ncol=n)
rownames(Z)=levels(g)
colnames(Z)=levels(g)
k=0
for(i in 1:(n-1)){
for(j in (i+1):n){
k=k+1
Datax = subset(d, g==levels(g)[i])
Datay = subset(d, g==levels(g)[j])
Dataz = rbind(Datax, Datay)
Dataz$g2 = factor(Dataz$g)
z = independence_test(x ~ g2, data=Dataz, ...)
Y[i,j] = signif(pvalue(z), digits = 4)
}
}
Z[upper.tri(Z)] =
signif(p.adjust(Y[upper.tri(Y)], method=method), digits=4)
Z = t(Z)
Z[upper.tri(Z)] =
signif(p.adjust(Y[upper.tri(Y)], method=method), digits=4)
diag(Z) = signif(1.00, digits = 4)
W = method
V = list(Y, W, Z)
names(V) = c("Unadjusted",
"Method",
"Adjusted")
return(V)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.