gibbs_mult_fpca: Multilevel FoSR using a Gibbs sampler and FPCA

View source: R/Gibbs_Mult_FPCA.R

gibbs_mult_fpcaR Documentation

Multilevel FoSR using a Gibbs sampler and FPCA

Description

Fitting function for function-on-scalar regression for longitudinal data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.

Usage

gibbs_mult_fpca(
  formula,
  Kt = 5,
  Kp = 2,
  data = NULL,
  verbose = TRUE,
  N.iter = 5000,
  N.burn = 1000,
  sig2.me = 0.01,
  alpha = 0.1,
  SEED = NULL
)

Arguments

formula

a formula indicating the structure of the proposed model.

Kt

number of spline basis functions used to estimate coefficient functions

Kp

number of FPCA basis functions to be estimated

data

an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.

verbose

logical defaulting to TRUE – should updates on progress be printed?

N.iter

number of iterations used in the Gibbs sampler

N.burn

number of iterations discarded as burn-in

sig2.me

starting value for measurement error variance

alpha

tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)

SEED

seed value to start the sampler; ensures reproducibility

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.


refund documentation built on Sept. 21, 2024, 1:07 a.m.