ffpc | R Documentation |
Defines a term \int X_i(s)\beta(t,s)ds
for inclusion in an mgcv::gam
-formula (or bam
or gamm
or gamm4:::gamm4
) as constructed
by pffr
.
ffpc(
X,
yind = NULL,
xind = seq(0, 1, length = ncol(X)),
splinepars = list(bs = "ps", m = c(2, 1), k = 8),
decomppars = list(pve = 0.99, useSymm = TRUE),
npc.max = 15
)
X |
an n by |
yind |
DEPRECATED used to supply matrix (or vector) of indices of evaluations of |
xind |
matrix (or vector) of indices of evaluations of |
splinepars |
optional arguments supplied to the |
decomppars |
parameters for the FPCA performed with |
npc.max |
maximal number |
In contrast to ff
, ffpc
does an FPCA decomposition X(s) \approx \sum^K_{k=1} \xi_{ik} \Phi_k(s)
using fpca.sc
and
represents \beta(t,s)
in the function space spanned by these \Phi_k(s)
.
That is, since
\int X_i(s)\beta(t,s)ds = \sum^K_{k=1} \xi_{ik} \int \Phi_k(s) \beta(s,t) ds = \sum^K_{k=1} \xi_{ik} \tilde \beta_k(t),
the function-on-function term can be represented as a sum of K
univariate functions \tilde \beta_k(t)
in t
each multiplied by the FPC
scores \xi_{ik}
. The truncation parameter K
is chosen as described in fpca.sc
.
Using this instead of ff()
can be beneficial if the covariance operator of the X_i(s)
has low effective rank (i.e., if K
is small). If the covariance operator of the X_i(s)
is of (very) high rank, i.e., if K
is large, ffpc()
will not be very efficient.
To reduce model complexity, the \tilde \beta_k(t)
all have a single joint smoothing parameter
(in mgcv
, they get the same id
, see s
).
Please see pffr
for details on model specification and
implementation.
A list containing the necessary information to construct a term to be included in a mgcv::gam
-formula.
Fabian Scheipl
## Not run:
set.seed(1122)
n <- 55
S <- 60
T <- 50
s <- seq(0,1, l=S)
t <- seq(0,1, l=T)
#generate X from a polynomial FPC-basis:
rankX <- 5
Phi <- cbind(1/sqrt(S), poly(s, degree=rankX-1))
lambda <- rankX:1
Xi <- sapply(lambda, function(l)
scale(rnorm(n, sd=sqrt(l)), scale=FALSE))
X <- Xi %*% t(Phi)
beta.st <- outer(s, t, function(s, t) cos(2 * pi * s * t))
y <- (1/S*X) %*% beta.st + 0.1 * matrix(rnorm(n * T), nrow=n, ncol=T)
data <- list(y=y, X=X)
# set number of FPCs to true rank of process for this example:
m.pc <- pffr(y ~ c(1) + 0 + ffpc(X, yind=t, decomppars=list(npc=rankX)),
data=data, yind=t)
summary(m.pc)
m.ff <- pffr(y ~ c(1) + 0 + ff(X, yind=t), data=data, yind=t)
summary(m.ff)
# fits are very similar:
all.equal(fitted(m.pc), fitted(m.ff))
# plot implied coefficient surfaces:
layout(t(1:3))
persp(t, s, t(beta.st), theta=50, phi=40, main="Truth",
ticktype="detailed")
plot(m.ff, select=1, zlim=range(beta.st), theta=50, phi=40,
ticktype="detailed")
title(main="ff()")
ffpcplot(m.pc, type="surf", auto.layout=FALSE, theta = 50, phi = 40)
title(main="ffpc()")
# show default ffpcplot:
ffpcplot(m.pc)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.