lpeer | R Documentation |
Implements longitudinal functional model with structured penalties (Kundu et al., 2012) with scalar outcome, single functional predictor, one or more scalar covariates and subject-specific random intercepts through mixed model equivalence.
lpeer(
Y,
subj,
t,
funcs,
argvals = NULL,
covariates = NULL,
comm.pen = TRUE,
pentype = "Ridge",
L.user = NULL,
f_t = NULL,
Q = NULL,
phia = 10^3,
se = FALSE,
...
)
Y |
vector of all outcomes over all visits or timepoints |
subj |
vector containing the subject number for each observation |
t |
vector containing the time information when the observation are taken |
funcs |
matrix containing observed functional predictors as rows. Rows
with |
argvals |
matrix (or vector) of indices of evaluations of |
covariates |
matrix of scalar covariates. |
comm.pen |
logical value indicating whether common penalty for all the
components of regression function. Default is |
pentype |
type of penalty: either decomposition based penalty
( |
L.user |
penalty matrix. Need to be specified with
|
f_t |
vector or matrix with number of rows equal to number of total
observations and number of columns equal to d (see details). If matrix then
each column pertains to single function of time and the value in the column
represents the realization corresponding to time vector t. The column with
intercept or multiple of intercept will be dropped. A |
Q |
Q matrix to derive decomposition based penalty. Need to be
specified with |
phia |
scalar value of a in decomposition based penalty. Needs to be
specified with |
se |
logical; calculate standard error when |
... |
additional arguments passed to |
If there are any missing or infinite values in Y
, subj
,
t
, covariates
, funcs
and f_t
, the corresponding
row (or observation) will be dropped, and infinite values are not allowed
for these arguments. Neither Q
nor L
may contain missing or
infinite values. lpeer()
fits the following model:
y_{i(t)}=X_{i(t)}^T \beta+\int {W_{i(t)}(s)\gamma(t,s) ds}
+Z_{i(t)}u_i + \epsilon_{i(t)}
where \epsilon_{i(t)} ~ N(0,\sigma ^2)
and u_i ~ N(0,
\sigma_u^2)
. For all the observations, predictor function
W_{i(t)}(s)
is evaluated at K sampling points. Here, regression
function \gamma (t,s)
is represented in terms of (d+1) component
functions \gamma_0(s)
,..., \gamma_d(s)
as follows
\gamma (t,s)= \gamma_0(s)+f_1(t) \gamma_1(s) + f_d(t) \gamma_d(s)
Values of y_{i(t)} , X_{i(t)}
and W_{i(t)}(s)
are passed
through argument Y
, covariates
and funcs
,
respectively. Number of elements or rows in Y
, t
,
subj
, covariates
(if not NULL
) and funcs
need
to be equal.
Values of f_1(t),...,f_d(t)
are passed through f_t argument. The
matrix passed through f_t
argument should have d columns where each
column represents one and only one of f_1(t),..., f_d(t)
.
The estimate of (d+1) component functions \gamma_0(s)
,...,
\gamma_d(s)
is obtained as penalized estimated. The following 3 types
of penalties can be used for a component function:
i. Ridge: I_K
ii. Second-order difference: [d_{i,j}
] with d_{i,i} = d_{i,i+2}
= 1, d_{i,i+1} = -2
, otherwise d_{i,j} =0
iii. Decomposition based penalty: bP_Q+a(I-P_Q)
where P_Q= Q^T
(QQ^T)^{-1}Q
For Decomposition based penalty the user must specify pentype=
'DECOMP'
and the associated Q matrix must be passed through the Q
argument. Alternatively, one can directly specify the penalty matrix by
setting pentype= 'USER'
and using the L
argument to supply
the associated L matrix.
If Q (or L) matrix is similar for all the component functions then argument
comm.pen
should have value TRUE
and in that case specified
matrix to argument Q
(or L
) should have K columns. When Q (or
L) matrix is different for all the component functions then argument
comm.pen
should have value FALSE
and in that case specified
matrix to argument Q
(or L
) should have K(d+1) columns. Here
first K columns pertains to first component function, second K columns
pertains to second component functions, and so on.
Default penalty is Ridge penalty for all the component functions and user
needs to specify 'RIDGE'
. For second-order difference penalty, user
needs to specify 'D2'
. When pentype is 'RIDGE'
or 'D2'
the value of comm.pen
is always TRUE
and
comm.pen=FALSE
will be ignored.
A list containing:
fit |
result of the call to |
fitted.vals |
predicted outcomes |
BetaHat |
parameter estimates for scalar covariates including intercept |
se.Beta |
standard error of parameter estimates for scalar covariates including intercept |
Beta |
parameter estimates with standard error for scalar covariates including intercept |
GammaHat |
estimates of components of regression functions. Each column represents one component function. |
Se.Gamma |
standard error associated with |
AIC |
AIC value of fit (smaller is better) |
BIC |
BIC value of fit (smaller is better) |
logLik |
(restricted) log-likelihood at convergence |
lambda |
list of estimated smoothing parameters associated with each component function |
V |
conditional variance of Y treating only random intercept as random one. |
V1 |
unconditional variance of Y |
N |
number of subjects |
K |
number of Sampling points in functional predictor |
TotalObs |
total number of observations over all subjects |
Sigma.u |
estimated sd of random intercept. |
sigma |
estimated within-group error standard deviation. |
Madan Gopal Kundu mgkundu@iupui.edu
Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties (arXiv:1211.4763 [stat.AP]).
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323–353.
peer
, plot.lpeer
## Not run:
#------------------------------------------------------------------------
# Example 1: Estimation with Ridge penalty
#------------------------------------------------------------------------
##Load Data
data(DTI)
## Extract values for arguments for lpeer() from given data
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]
##1.1 Fit the model with single component function
## gamma(t,s)=gamm0(s)
t<- DTI$visit
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca)
plot(fit.cca.lpeer1)
##1.2 Fit the model with two component function
## gamma(t,s)=gamm0(s) + t*gamma1(s)
fit.cca.lpeer2 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca,
f_t=t, se=TRUE)
plot(fit.cca.lpeer2)
#------------------------------------------------------------------------
# Example 2: Estimation with structured penalty (need structural
# information about regression function or predictor function)
#------------------------------------------------------------------------
##Load Data
data(PEER.Sim)
## Extract values for arguments for lpeer() from given data
K<- 100
W<- PEER.Sim[,c(3:(K+2))]
Y<- PEER.Sim[,K+3]
t<- PEER.Sim[,2]
id<- PEER.Sim[,1]
##Load Q matrix containing structural information
data(Q)
##2.1 Fit the model with two component function
## gamma(t,s)=gamm0(s) + t*gamma1(s)
Fit1<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,
pentype='DECOMP', f_t=cbind(1,t), Q=Q, se=TRUE)
Fit1$Beta
plot(Fit1)
##2.2 Fit the model with three component function
## gamma(t,s)=gamm0(s) + t*gamma1(s) + t^2*gamma1(s)
Fit2<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,
pentype='DECOMP', f_t=cbind(1,t, t^2), Q=Q, se=TRUE)
Fit2$Beta
plot(Fit2)
##2.3 Fit the model with two component function with different penalties
## gamma(t,s)=gamm0(s) + t*gamma1(s)
Q1<- cbind(Q, Q)
Fit3<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W,
pentype='DECOMP', f_t=cbind(1,t), Q=Q1, se=TRUE)
##2.4 Fit the model with two component function with user defined penalties
## gamma(t,s)=gamm0(s) + t*gamma1(s)
phia<- 10^3
P_Q <- t(Q)%*%solve(Q%*%t(Q))%*% Q
L<- phia*(diag(K)- P_Q) + 1*P_Q
Fit4<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,
pentype='USER', f_t=cbind(1,t), L=L, se=TRUE)
L1<- adiag(L, L)
Fit5<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W,
pentype='USER', f_t=cbind(1,t), L=L1, se=TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.