Description Usage Arguments Details Author(s) References See Also Examples
View source: R/summarize_tree.R
Reports the RMSE, AIC, and variable importances for a partition model or the variable importances from a random forest.
1 | summarize_tree(TREE)
|
TREE |
A partition model created with |
Extracts the RMSE and AIC of a partition model and the variable importances of partition models or random forests.
Adam Petrie
Introduction to Regression and Modeling
1 2 3 4 5 6 7 8 9 10 11 12 | data(WINE)
TREE <- rpart(Quality~.,data=WINE,control=rpart.control(cp=0.01,xval=10,minbucket=5))
summarize_tree(TREE)
RF <- randomForest(Quality~.,data=WINE,ntree=50)
summarize_tree(RF)
data(NFL)
TREE <- rpart(X4.Wins~.,data=NFL,control=rpart.control(cp=0.002,xval=10,minbucket=5))
summarize_tree(TREE)
RF <- randomForest(X4.Wins~.,data=NFL,ntree=50)
summarize_tree(RF)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.