Nothing
#' general.indices
#'
#' @description calculates indices to measure accuracy of a model.
#'
#' @param real the real values in traning-testing.
#' @param prediccion the prediction values in traning-testing.
#'
#' @return a list with the Correlation, Relative Error, Mean Absolute Error and Root Mean Square Error.
#' @export
#'
#' @examples
#' real <- rnorm(45)
#' prediction <- rnorm(45)
#' model <- "KNN"
#' general.indices(real, prediction)
#'
general.indices <- function(real, prediccion) {
RMSE <- sqrt(sum((real - prediccion) ^ 2) / length(prediccion))
MAE <- sum(abs(real - prediccion)) / length(prediccion)
RE <- sum(abs(real - prediccion)) / sum(abs(real)) * 100
desvStand <- sd(prediccion)
COR <- ifelse(near(desvStand,0), 0, as.numeric(cor(real, prediccion)))
COR <- ifelse(is.na(COR), 0 , COR)
indices <- list(RMSE = RMSE, MAE = MAE, RE = RE, COR = COR)
return(indices)
}
# Opciones KNN
opciones.knn <- function(ns, vc = F) {
opciones <- tags$div(
numericInput(ns("kmax"), labelInput("kmax"), min = 1,
step = 1, value = 1),
selectInput(
inputId = ns("kernel"), label = labelInput("selkernel"),
choices = c("optimal", "rectangular", "triangular",
"epanechnikov", "biweight", "triweight",
"cos", "inv", "gaussian"),
selected = "optimal", multiple = vc),
radioSwitch(ns("scale"), "escal", c("si", "no"))
)
return(opciones)
}
# Opciones SVM
opciones.svm <- function(ns, vc = F) {
opciones <- tags$div(
radioSwitch(ns("scale"), "escal", c("si", "no")),
selectInput(ns("kernel"), label = labelInput("selkernel"),
choices = c("radial", "polynomial", "linear", "sigmoid"),
selected = "radial", multiple = vc)
)
return(opciones)
}
# Opciones Arboles
opciones.tree <- function(ns, vc = F) {
opciones <- tags$div(
numericInput(ns("minsplit"), labelInput("minsplit"), 2,
width = "100%", min = 1),
numericInput(ns("maxdepth"), labelInput("maxdepth"), 15,
width = "100%",min = 0, max = 30, step = 1),
selectInput(ns("split"), label = labelInput("splitIndex"),
choices = list("gini" = "gini", "Entropia" = "information"),
selected = "gini", multiple = vc)
)
return(opciones)
}
# Opciones Bosques
opciones.rndf <- function(ns) {
opciones <- tags$div(
numericInput(ns("ntree"), labelInput("numTree"), 5, width = "100%", min = 0),
numericInput(ns("mtry"), labelInput("numVars"), 1, width = "100%", min = 1)
)
return(opciones)
}
# Opciones Potenciacion
opciones.boost <- function(ns, vc = F) {
opciones <- tags$div(
numericInput(ns("n.trees"), labelInput("numTree"),
5, width = "100%", min = 1),
numericInput(ns("shrinkage"), labelInput("shrinkage"), 0.1,
width = "100%", min = 0.01, step = 0.01),
selectInput(ns("distribution"), label = labelInput("selectAlg"),
choices = c("gaussian", "laplace", "tdist"),
selected = "gaussian", multiple = vc)
)
return(opciones)
}
# Opciones XGB
opciones.xgb <- function(ns, vc = F) {
opciones <- tags$div(
numericInput(ns("nrounds"), labelInput("selnrounds"),
min = 0, step = 1, value = 20),
numericInput(ns("max_depth"), labelInput("maxdepth"),
min = 1, step = 1, value = 6),
selectInput(ns("booster"), label = labelInput("selbooster"),
choices = c("gbtree", "gblinear", "dart"),
selected = "gbtree", multiple = vc)
)
return(opciones)
}
# Opciones Redes Neuronales
opciones.nnet <- function(ns) {
opciones <- tags$div(
numericInput(ns("threshold"), labelInput("threshold"),
min = 0, step = 0.01, value = 0.05),
numericInput(ns("stepmax"), labelInput("stepmax"),
min = 100, step = 100, value = 5000),
sliderInput(ns("n_hidden"), min = 1, max = 10,
label = labelInput("selectCapas"), value = 2),
fluidRow(
id = ns("capasFila"),
lapply(1:10, function(i) {
tags$span(
col_4(
numericInput(ns(paste0("hidden", i)), NULL,
min = 1, step = 1, value = 2),
class = "mini-numeric-select"
)
)
})
)
)
return(opciones)
}
# Opciones Regresion Penalizada
opciones.regp <- function(ns, vc = F) {
opciones <- tags$div(
selectInput(ns("alpha"), label = labelInput("selectAlg"),
selected = 0, choices = list("Ridge" = 0, "Lasso" = 1),
multiple = vc),
radioSwitch(ns("scales"), "escal", c("si", "no"))
)
return(opciones)
}
# Opciones reduccion de la dimension
opciones.rdim <- function(ns, vc = F) {
opciones <- tags$div(
selectInput(ns("algoritmo"), label = labelInput("selectAlg"),
selected = "ACP", choices = list("ACP", "MCP"), multiple = vc),
radioSwitch(ns("scale"), "escal", c("si", "no")),
fluidRow(
col_6(
numericInput(ns("ncomp"), labelInput("ncomp"), 2, 1, width = "100%")
),
col_6(
radioSwitch(ns("ncompdef"), "", c("manual", "automatico"))
)
)
)
return(opciones)
}
# Generar opciones
generar.opciones <- function(nombre, ns, vc = F) {
opciones <- NULL
if(nombre == "knn") {
opciones <- opciones.knn(ns, vc)
} else if (nombre == "svm") {
opciones <- opciones.svm(ns, vc)
} else if (nombre == "tree") {
opciones <- opciones.tree(ns, vc)
} else if (nombre == "rndf") {
opciones <- opciones.rndf(ns)
} else if (nombre == "boost") {
opciones <- opciones.boost(ns, vc)
} else if (nombre == "xgb") {
opciones <- opciones.xgb(ns, vc)
} else if (nombre == "nnet") {
opciones <- opciones.nnet(ns)
} else if (nombre == "reg") {
opciones <- NULL
} else if (nombre == "regp") {
opciones <- opciones.regp(ns, vc)
} else if (nombre == "rdim") {
opciones <- opciones.rdim(ns, vc)
}
return(opciones)
}
# Generar modelo
generar.modelo <- function(nombre, formula, datos, input, cat) {
modelo <- NULL
algoritmo <- NULL
tryCatch({
if(nombre == "knn") {
scale <- isolate(input$scale)
kernel <- isolate(input$kernel)
kmax <- isolate(input$kmax)
modelo <- train.knn(formula, data = datos, scale = scale,
kernel = kernel, kmax = kmax)
algoritmo <- paste0(nombre, "-", kernel)
} else if (nombre == "svm") {
scale <- isolate(as.logical(input$scale))
kernel <- isolate(input$kernel)
modelo <- train.svm(formula, data = datos,
scale = scale, kernel = kernel)
algoritmo <- paste0(nombre, "-", kernel)
} else if (nombre == "tree") {
minsplit <- isolate(input$minsplit)
maxdepth <- isolate(input$maxdepth)
split <- isolate(input$split)
modelo <- train.rpart(
formula, data = datos,
control = rpart.control(minsplit = minsplit, maxdepth = maxdepth),
parms = list(split = split))
algoritmo <- paste0(nombre, "-", split)
} else if (nombre == "rndf") {
mtry <- isolate(input$mtry)
ntree <- isolate(input$ntree)
modelo <-train.randomForest(
formula, data = datos, mtry = mtry, ntree = ntree, importance = TRUE)
algoritmo <- nombre
} else if (nombre == "boost") {
n.trees <- isolate(input$n.trees)
distribution <- isolate(input$distribution)
shrinkage <- isolate(input$shrinkage)
modelo <- train.gbm(
formula, data = datos, distribution = distribution, n.trees = n.trees,
shrinkage = shrinkage)
algoritmo <- paste0(nombre, "-", distribution)
} else if (nombre == "xgb") {
nrounds <- isolate(input$nrounds)
max_depth <- isolate(input$max_depth)
booster <- isolate(input$booster)
modelo <- train.xgboost(
formula, data = datos, booster = booster,
max_depth = max_depth, nrounds = nrounds)
algoritmo <- paste0(nombre, "-", booster)
} else if (nombre == "nnet") {
tryCatch({
threshold <- isolate(input$threshold)
stepmax <- isolate(input$stepmax)
hidden <- isolate(c(
input$hidden1, input$hidden2, input$hidden3, input$hidden4,
input$hidden5, input$hidden6, input$hidden7, input$hidden8,
input$hidden9, input$hidden10))
n_hidden <- isolate(input$n_hidden)
hidden <- as.numeric(hidden[1:n_hidden])
modelo <- train.neuralnet(
formula = formula, data = datos, threshold = threshold,
stepmax = stepmax, hidden = hidden, act.fct = "tanh")
algoritmo <- nombre
}, error = function(e) {
stop(e)
return(list(modelo = NULL, algoritmo = NULL))
}, warning = function(w) {
stop(w)
return(list(modelo = NULL, algoritmo = NULL))
})
} else if (nombre == "reg") {
suppressWarnings({
modelo <- train.glm(formula, data = datos, family = "gaussian")
algoritmo <- nombre
})
} else if (nombre == "regp") {
tryCatch({
scales <- isolate(as.logical(input$scales))
alpha <- isolate(input$alpha)
tipo <- ifelse(alpha == 0, "ridge", "lasso")
x <- model.matrix(formula, datos)[, -1]
y <- datos[, cat]
modelo <- cv.glmnet(x, y, standardize = scales, alpha = alpha)
algoritmo <- paste0(nombre, "-", tipo)
}, error = function(e) {
return(list(modelo = NULL, algoritmo = NULL))
}, warning = function(w) {
return(list(modelo = NULL, algoritmo = NULL))
})
} else if (nombre == "rdim") {
algoritmo <- isolate(input$algoritmo)
scale <- isolate(input$scale)
ncomp <- isolate(input$ncomp)
ncompdef <- isolate(input$ncompdef)
if(ncompdef) {
if(algoritmo == "ACP") {
modelo <- pcr(formula, ncomp = ncomp, data = datos, scale = scale, validation = 'CV')
} else {
modelo <- plsr(formula, ncomp = ncomp, data = datos, scale = scale, validation = 'CV')
}
} else {
if(algoritmo == "ACP") {
modelo <- pcr(formula, data = datos, scale = scale, validation = 'CV')
} else {
modelo <- plsr(formula, data = datos, scale = scale, validation = 'CV')
}
}
optimal.ncomp <- which.min(RMSEP(modelo)$val[1, 1, ]) - 1
modelo$optimal.ncomp <- optimal.ncomp
algoritmo <- paste0(nombre, "-", algoritmo)
}
return(list(modelo = modelo, algoritmo = algoritmo))
}, error = function(e) {
print(e)
return(list(modelo = NULL, algoritmo = NULL))
})
}
# Generar modelos
generar.modelos <- function(nombre, formula, datos, input) {
modelos <- list()
algoritmos <- list()
tryCatch({
if(nombre == "knn") {
scale <- isolate(input$scale)
kernel <- isolate(input$kernel)
kmax <- isolate(input$kmax)
for (k in kernel) {
algoritmo <- paste0(nombre, "-", k)
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.knn(
formula, data = datos, scale = scale, kernel = k, kmax = kmax)
}
} else if (nombre == "svm") {
scale <- isolate(as.logical(input$scale))
kernel <- isolate(input$kernel)
for (k in kernel) {
algoritmo <- paste0(nombre, "-", k)
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.svm(
formula, data = datos, scale = scale, kernel = k)
}
} else if (nombre == "tree") {
minsplit <- isolate(input$minsplit)
maxdepth <- isolate(input$maxdepth)
split <- isolate(input$split)
for (k in split) {
algoritmo <- paste0(nombre, "-", k)
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.rpart(
formula, data = datos,
control = rpart.control(minsplit = minsplit, maxdepth = maxdepth),
parms = list(split = k))
}
} else if (nombre == "rndf") {
mtry <- isolate(input$mtry)
ntree <- isolate(input$ntree)
algoritmo <- nombre
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.randomForest(
formula, data = datos, mtry = mtry, ntree = ntree, importance = TRUE)
} else if (nombre == "boost") {
n.trees <- isolate(input$n.trees)
distribution <- isolate(input$distribution)
shrinkage <- isolate(input$shrinkage)
for (k in distribution) {
algoritmo <- paste0(nombre, "-", k)
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.gbm(
formula, data = datos, distribution = k, n.trees = n.trees,
shrinkage = shrinkage)
}
} else if (nombre == "xgb") {
nrounds <- isolate(input$nrounds)
max_depth <- isolate(input$max_depth)
booster <- isolate(input$booster)
for (k in booster) {
algoritmo <- paste0(nombre, "-", k)
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.xgboost(
formula, data = datos, booster = k,
max_depth = max_depth, nrounds = nrounds)
}
} else if (nombre == "nnet") {
threshold <- isolate(input$threshold)
stepmax <- isolate(input$stepmax)
hidden <- isolate(c(
input$hidden1, input$hidden2, input$hidden3, input$hidden4,
input$hidden5, input$hidden6, input$hidden7, input$hidden8,
input$hidden9, input$hidden10))
n_hidden <- isolate(input$n_hidden)
hidden <- as.numeric(hidden[1:n_hidden])
algoritmo <- nombre
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.neuralnet(
formula = formula, data = datos, threshold = threshold,
stepmax = stepmax, hidden = hidden, act.fct = "tanh")
} else if (nombre == "reg") {
algoritmo <- nombre
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.glm(formula, data = datos,
family = "gaussian")
} else if (nombre == "regp") {
scales <- isolate(as.logical(input$scales))
alpha <- isolate(input$alpha)
for (k in alpha) {
tipo <- ifelse(k == 0, "ridge", "lasso")
algoritmo <- paste0(nombre, "-", tipo)
algoritmos <- append(algoritmos, algoritmo)
modelos[[algoritmo]] <- train.glmnet(
formula, data = datos, standardize = scales,
alpha = k, family = "gaussian")
}
} else if (nombre == "rdim") {
algoritmo <- isolate(input$algoritmo)
scale <- isolate(input$scale)
ncomp <- isolate(input$ncomp)
ncompdef <- isolate(input$ncompdef)
for (k in algoritmo) {
algoritmo <- paste0(nombre, "-", k)
algoritmos <- append(algoritmos, algoritmo)
if(ncompdef) {
if(algoritmo == "ACP") {
modelo <- pcr(
formula, ncomp = ncomp, data = datos,
scale = scale, validation = 'CV')
} else {
modelo <- plsr(
formula, ncomp = ncomp, data = datos,
scale = scale, validation = 'CV')
}
} else {
if(algoritmo == "ACP") {
modelo <- pcr(
formula, data = datos,
scale = scale, validation = 'CV')
} else {
modelo <- pcr(
formula, data = datos,
scale = scale, validation = 'CV')
}
}
optimal.ncomp <- which.min(RMSEP(modelo)$val[1, 1, ]) - 1
modelo$optimal.ncomp <- optimal.ncomp
modelos[[algoritmo]] <- modelo
}
}
return(modelos)
}, error = function(e) {
print(e)
return(list(modelos = NULL, algoritmos = NULL))
})
}
#' plot_real_prediction
#'
#' @description scatter plot between the actual value of the variable to be predicted and the prediction of the model.
#'
#' @param real the real values in traning-testing.
#' @param pred the prediction values in traning-testing.
#' @param titles Labels on the chart
#'
#' @author Ariel Arroyo <luis.ariel.arroyo@promidat.com>
#' @return echarts4r plot
#' @import echarts4r
#' @export
#'
plot_real_prediction <- function(real, pred, titles = c("Real", "Prediccion")) {
tooltip <- paste0(
"function(params) {",
" mark = params.marker + '<br/>';",
" id = '<b>ID: </b>' + params.name + '<br/>';",
" real = '<b>", titles[1], ": </b>' + params.value[0].toFixed(4) + '<br/>';",
" pred = '<b>", titles[2], ": </b>' + params.value[1].toFixed(4) + '<br/>';",
" return(mark + id + real + pred)",
"}"
)
df <- data.frame(real = real, pred = pred)
df$ID <- row.names(df)
df |>
e_charts(real) |>
e_scatter(pred, bind = ID, symbol_size = 10) |>
e_lm(pred ~ real) |>
e_axis_labels(x = titles[1], y = titles[2]) |>
e_axis(scale = TRUE) |>
e_tooltip(formatter = e_JS(tooltip)) |>
e_datazoom(show = FALSE) |>
e_legend(show = FALSE)
}
# Tabla con predicciones
tabla.pred <- function(real, pred, etqs, decs) {
ids <- names(pred)
real <- round(as.numeric(real), decs)
pred <- round(as.numeric(pred), decs)
df <- data.frame(real, pred)
df$error <- round(df$pred - df$real, decs)
row.names(df) <- ids
sketch <- htmltools::withTags(table(tableHeader(c("ID", etqs, "error"))))
tabla <- DT::datatable(
df, rownames = TRUE, selection = "none",
editable = FALSE, escape = FALSE, container = sketch,
options = list(dom = "frtip", pageLength = 10)
)
return(tabla)
}
# Gráfico variación del error
e_var_error <- function(df, escalar = T, titulos = c("Iteracion", "Error")) {
r <- lapply(1:nrow(df), function(i) {
pgs <- unname(unlist(df[i, , drop = F]))
pgm <- mean(pgs)
pgp <- lapply(1:length(pgs), function(j) {
list(value = pgs[j], xAxis = j - 1, yAxis = pgs[j])
})
if(length(pgs) == 1) {
pgs <- list(pgs)
}
list(
data = pgs,
type = "line",
name = row.names(df)[i],
markLine = list(data = list(list(yAxis = pgm))),
markPoint = list(data = pgp)
)
})
if(ncol(df) == 1) {
xdata <- as.character(1)
} else {
xdata <- 1:ncol(df)
}
res <- e_charts() |> e_list(list(
xAxis = list(
type = "category",
data = xdata
),
yAxis = list(
type = "value"
),
series = r
)) |> e_show_loading() |> e_legend() |>
e_axis_labels(x = titulos[1], y = titulos[2]) |>
e_x_axis(scale = T) |> e_datazoom(show = F)
if(escalar) {
res <- res |> e_y_axis(scale = T)
} else {
res <- res |> e_y_axis(min = 0, max = 100)
}
return(res)
}
# Gráfico Barras del error
e_eval_bar <- function(df, titulos = c("Modelo", "Error")) {
res <- df |> e_charts(Modelo) |>
e_bar(RMSE, name = "RMSE")
for (x in colnames(df)[3:ncol(df)]) {
res <- res |> e_bar_(x, name = x) |>
e_legend_unselect(x)
}
res <- res |> e_show_loading() |> e_legend(show = T) |>
e_axis_labels(x = titulos[1], y = titulos[2]) |>
e_datazoom(show = F) |> e_tooltip() |>
e_x_axis(axisLabel = list(rotate = 45))
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.