Nothing
#' @title Nice formatting of simple slopes for lm models
#'
#' @description Extracts simple slopes from [lm()] model
#' object and format for a publication-ready format.
#'
#' @inherit nice_lm details
#'
#' @param model The model to be formatted.
#' @param predictor The independent variable.
#' @param moderator The moderating variable.
#' @param b.label What to rename the default "b" column (e.g.,
#' to capital B if using standardized data for it to be converted
#' to the Greek beta symbol in the [nice_table()] function). Now
#' attempts to automatically detect whether the variables were
#' standardized, and if so, sets `b.label = "B"` automatically.
#' Factor variables or dummy variables (only two numeric values)
#' are ignored when checking for standardization.
#' *This argument is now deprecated, please use argument
#' `standardize` directly instead.*
#' @param standardize Logical, whether to standardize the
#' data before refitting the model. If `TRUE`, automatically sets
#' `b.label = "B"`. Defaults to `FALSE`. Note that if you have factor
#' variables, these will be pseudo-betas, so these coefficients could
#' be interpreted more like Cohen's *d*.
#' @param mod.id Logical. Whether to display the model number,
#' when there is more than one model.
#' @param ci.alternative Alternative for the confidence interval
#' of the sr2. It can be either "two.sided (the default in this
#' package), "greater", or "less".
#' @param ... Further arguments to be passed to the [lm()]
#' function for the models.
#'
#' @keywords moderation interaction regression
#' @return A formatted dataframe of the simple slopes of the specified lm model,
#' with DV, levels of IV, degrees of freedom, regression coefficient,
#' t-value, p-value, and the effect size, the semi-partial correlation
#' squared, and its confidence interval.
#' @export
#' @examplesIf requireNamespace("effectsize", quietly = TRUE)
#' # Make and format model
#' model <- lm(mpg ~ gear * wt, mtcars)
#' nice_lm_slopes(model, predictor = "gear", moderator = "wt")
#'
#' # Make and format multiple models
#' model2 <- lm(qsec ~ gear * wt, mtcars)
#' my.models <- list(model, model2)
#' x <- nice_lm_slopes(my.models, predictor = "gear", moderator = "wt")
#' x
#' @examplesIf requireNamespace("effectsize", quietly = TRUE) && packageVersion("effectsize") >= "0.8.3.5"
#' # Get interpretations
#' cbind(x, Interpretation = effectsize::interpret_r2_semipartial(x$sr2))
#'
#' @seealso
#' Checking for moderation before checking simple slopes:
#' \code{\link{nice_lm}}, \code{\link{nice_mod}},
#' \code{\link{nice_slopes}}. Tutorial:
#' \url{https://rempsyc.remi-theriault.com/articles/moderation}
#'
nice_lm_slopes <- function(model,
predictor,
moderator,
b.label = "b",
standardize = FALSE,
mod.id = TRUE,
ci.alternative = "two.sided",
...) {
rlang::check_installed("effectsize",
version = get_dep_version("effectsize"),
reason = "for this function."
)
if (inherits(model, "list") && all(unlist(lapply(model, inherits, "lm")))) {
models.list <- model
} else if (inherits(model, "lm")) {
models.list <- list(model)
} else {
stop("Model must be of class 'lm' or be a 'list()' of lm models (using 'c()' won't work).")
}
lapply(models.list, function(x) {
check_col_names(x$model, c(predictor, moderator))
})
if (!missing(b.label)) {
message(paste(
"The argument 'b.label' is deprecated.",
"If your data is standardized, capital B will be used automatically.",
"Else, please use argument 'standardize' directly instead."
))
}
if (model_is_standardized(models.list)) {
b.label <- "B"
} else if (isTRUE(standardize)) {
data.list <- lapply(models.list, function(x) {
scale(x$model)
})
models.list <- lapply(seq_along(models.list), function(i) {
data <- as.data.frame(data.list[i])
stats::update(models.list[[i]], data = data)
})
b.label <- "B"
}
data.list <- lapply(models.list, function(x) {
x$model
})
DV.list <- unlist(lapply(models.list, function(x) {
as.character(x$terms[[2]])
}))
# Calculate simple slopes for LOWS
data.list.lows <- lapply(data.list, function(x) {
x$lows <- unlist(x[, moderator] + sd(unlist(x[, moderator])))
x
})
formulas.lows <- lapply(models.list, function(x) {
gsub(moderator, "lows", list(x$terms))
})
models.list.lows <- lapply(seq(length(formulas.lows)), function(x) {
lm(formulas.lows[[x]], data = data.list.lows[[x]], ...)
})
table.stats1 <- lapply(models.list.lows, nice_lm,
ci.alternative = ci.alternative
)
table.stats1 <- dplyr::bind_rows(table.stats1)
table.stats1 <- dplyr::filter(table.stats1, .data$Predictor == {{ predictor }})
table.stats1$Predictor <- paste0(predictor, " (LOW-", moderator, ")")
# Calculate simple slopes for mean-level
table.stats2 <- lapply(models.list, nice_lm, ci.alternative = ci.alternative)
table.stats2 <- dplyr::bind_rows(table.stats2)
table.stats2 <- dplyr::filter(table.stats2, .data$Predictor == {{ predictor }})
table.stats2$Predictor <- paste0(predictor, " (MEAN-", moderator, ")")
# Calculate simple slopes for HIGHS
data.list.highs <- lapply(data.list, function(x) {
x$highs <- unlist(x[, moderator] - sd(unlist(x[, moderator])))
x
})
formulas.highs <- lapply(models.list, function(x) {
gsub(moderator, "highs", list(x$terms))
})
models.list.highs <- lapply(seq(length(formulas.highs)), function(x) {
lm(formulas.highs[[x]], data = data.list.highs[[x]], ...)
})
table.stats3 <- lapply(models.list.highs, nice_lm,
ci.alternative = ci.alternative
)
table.stats3 <- dplyr::bind_rows(table.stats3)
table.stats3 <- dplyr::filter(table.stats3, .data$Predictor == {{ predictor }})
table.stats3$Predictor <- paste0(predictor, " (HIGH-", moderator, ")")
# Combine both dataframes for both LOWS and HIGHS
table.stats <- rbind(table.stats1, table.stats2, table.stats3)
correct.order <- c(aperm(
array(
seq(nrow(table.stats)),
c(1, nrow(table.stats) / 3, 3)
),
c(1, 3, 2)
))
table.stats <- table.stats[correct.order, ] # 1, 4, 7, 2, 5, 8, 3, 6, 9
table.stats <- dplyr::rename(table.stats,
`Predictor (+/-1 SD)` = "Predictor"
)
names(table.stats)[names(table.stats) == "b"] <- b.label
if (length(models.list) > 1 & mod.id == TRUE) {
model.number <- rep(seq_along(models.list), each = 3)
table.stats <- stats::setNames(
cbind(model.number, table.stats),
c("Model Number", names(table.stats))
)
}
row.names(table.stats) <- NULL
table.stats
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.