Nothing
# Coverage tests for report.MixMod functions
skip_if_not_installed("GLMMadaptive")
skip_on_cran() # GLMMadaptive mixed models are computationally intensive
test_that("report.MixMod coverage test", {
set.seed(999)
# Create longitudinal data suitable for GLMMadaptive
n_subjects <- 8
n_timepoints <- 4
data_mixmod <- data.frame(
id = rep(1:n_subjects, each = n_timepoints),
time = rep(c(0, 1, 2, 3), n_subjects),
x = rnorm(n_subjects * n_timepoints)
)
# Create binary outcome appropriate for GLMMadaptive
data_mixmod$y <- rbinom(
nrow(data_mixmod), 1,
plogis(-1 + 0.5 * data_mixmod$time + 0.3 * data_mixmod$x)
)
# Create GLMMadaptive mixed model
suppressWarnings({
model <- GLMMadaptive::mixed_model(
fixed = y ~ time + x,
random = ~ 1 | id,
data = data_mixmod,
family = binomial()
)
})
# Test report.MixMod (which is aliased to report.lm)
r <- suppressWarnings(report(model, data = data_mixmod))
expect_s3_class(r, "report")
expect_type(summary(r), "character")
expect_s3_class(as.data.frame(r), c("report_table", "data.frame"))
# Test report_random.MixMod specifically
rr <- report_random(model)
expect_s3_class(rr, c("report_random", "character"))
expect_true(grepl("random effect", rr, fixed = TRUE))
# Test other MixMod-specific functions for coverage
rt <- report_table(model)
expect_s3_class(rt, c("report_table", "data.frame"))
# Test report_performance for MixMod
rp <- suppressWarnings(report_performance(model))
expect_s3_class(rp, c("report_performance", "character"))
# Test report_effectsize for MixMod
re <- suppressWarnings(report_effectsize(model))
expect_s3_class(re, "report_effectsize")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.