Nothing
skip_if_not_installed("GLMMadaptive")
skip_if_not_installed("glmmTMB") # Required by the report.MixMod method
test_that("report.MixMod", {
# Create a test GLMMadaptive model
skip_on_cran() # GLMMadaptive models can be computationally intensive
# Use example from GLMMadaptive documentation
# Create binary outcome data (GLMMadaptive works best with binomial)
set.seed(123)
n <- 50
K <- 8
t.max <- 15
times <- as.vector(replicate(n, c(0, sort(runif(K - 1, 0, t.max)))))
group <- sample(rep(0:1, each = n / 2))
DF <- data.frame(
id = rep(seq_len(n), each = K),
time = times,
group = factor(rep(group, each = K))
)
# Add binary outcome
DF$y <- rbinom(nrow(DF), 1, plogis(-2.13 + 0.24 * DF$time))
suppressWarnings({
model <- GLMMadaptive::mixed_model(
fixed = y ~ time + group,
random = ~ 1 | id,
data = DF,
family = binomial()
)
})
# Test main report function
r <- suppressWarnings(report(model, data = DF))
expect_s3_class(r, "report")
expect_s3_class(summary(r), "character")
expect_s3_class(as.data.frame(r), c("report_table", "data.frame"))
# Test that it uses lm methods (since report.MixMod <- report.lm)
expect_gt(nchar(summary(r)), 0)
expect_gt(nrow(as.data.frame(r)), 0)
# Test specific MixMod methods
rt <- report_table(model)
expect_s3_class(rt, c("report_table", "data.frame"))
rr <- report_random(model)
expect_s3_class(rr, c("report_random", "character"))
expect_true(grepl("random effect", rr, fixed = TRUE))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.