Description Usage Arguments Value Examples
Subsample informative genes, cluster cells using SNN, estimate missing expression values with the distribution mean of means extrapolated from these cell clusterings
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | bootstrapImputation(
expression_matrix,
select_cells = NULL,
select_genes = NULL,
log_transformed = TRUE,
log_base = exp(1),
proportion_genes = 0.6,
bootstrap_samples = 100,
number_pcs = 8,
k_neighbors = 30,
snn_resolution = 0.9,
impute_index = NULL,
use_mclapply = FALSE,
cores = 2,
return_individual_results = FALSE,
python_path = NULL,
verbose = FALSE
)
|
expression_matrix |
Row by column log-normalized expression matrix |
select_cells |
Subset cells if desired |
select_genes |
A vector of highly variable of differentially expressed gene names, defaults to the most variable |
log_transformed |
Whether the expression matrix has been log-transformed |
log_base |
If log-transformed, log-base used |
proportion_genes |
Proportion of informative genes to sample |
bootstrap_samples |
Number of samples for the bootstrap |
number_pcs |
Number of dimensions to inform SNN clustering |
k_neighbors |
Number of k neighbors to use for NN network |
snn_resolution |
Resolution parameter for SNN |
impute_index |
Index to impute, will default to all zeroes |
use_mclapply |
Run in parallel, default FALSE |
cores |
Number of cores for parallelization |
return_individual_results |
Return a list of subsampled means |
python_path |
path to your python binary (default = system path) |
verbose |
Print progress output to the console |
Returns a list with the imputed and original expression matrices
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | set.seed(0)
requireNamespace("Matrix")
## generate (meaningless) counts
c1 <- stats::rpois(5e3, 1)
c2 <- stats::rpois(5e3, 2)
m <- t(
rbind(
matrix(c1, nrow = 20),
matrix(c2, nrow = 20)
)
)
## construct an expression matrix m
colnames(m) <- paste0('cell', 1:ncol(m))
rownames(m) <- paste0('gene', 1:nrow(m))
m <- log(m/colSums(m)*1e4 + 1)
m <- methods::as(m, 'dgCMatrix')
## impute
m_imputed <- rescue::bootstrapImputation(
expression_matrix = m,
proportion_genes = .9,
bootstrap_samples = 2,
k_neighbors = 10
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.