Nothing
#' Gamma distribution
#'
#' See [stats::GammaDist].
#'
#' Both parameters can be overridden with
#' `with_params = list(shape = ..., rate = ...)`.
#'
#' @param shape Scalar shape parameter, or `NULL` as a placeholder.
#' @param rate Scalar rate parameter, or `NULL` as a placeholder.
#'
#' @return A `GammaDistribution` object.
#' @export
#'
#' @examples
#' alpha <- 2
#' beta <- 2
#'
#' d_gamma <- dist_gamma(shape = alpha, rate = beta)
#' x <- d_gamma$sample(100)
#' d_emp <- dist_empirical(x, positive = TRUE)
#'
#' plot_distributions(
#' empirical = d_emp,
#' theoretical = d_gamma,
#' estimated = d_gamma,
#' with_params = list(
#' estimated = inflate_params(
#' fitdistrplus::fitdist(x, distr = "gamma")$estimate
#' )
#' ),
#' .x = seq(1e-3, max(x), length.out = 100)
#' )
#'
#' @family Distributions
dist_gamma <- function(shape = NULL, rate = NULL) {
GammaDistribution$new(shape = shape, rate = rate)
}
GammaDistribution <- distribution_class_simple(
name = "Gamma",
fun_name = "gamma",
params = list(shape = I_POSITIVE_REALS, rate = I_POSITIVE_REALS),
support = I_POSITIVE_REALS,
diff_density = function(x, vars, log, params) {
res <- vars
if ("rate" %in% names(vars)) {
log_diff_rate <- params$shape / params$rate - x
res$rate <- if (log) {
log_diff_rate
} else {
log_diff_rate * dgamma(x, shape = params$shape, rate = params$rate)
}
}
if ("shape" %in% names(vars)) {
log_diff_shape <- log(x) + log(params$rate) - digamma(params$shape)
res$shape <- if (log) {
log_diff_shape
} else {
log_diff_shape * dgamma(x, shape = params$shape, rate = params$rate)
}
}
res
},
diff_probability = function(q, vars, lower.tail, log.p, params) {
res <- vars
if ("rate" %in% names(vars)) {
diff_rate <- q / params$rate * dgamma(
q, shape = params$shape, rate = params$rate
)
diff_rate[is.infinite(q)] <- 0.0
res$rate <- if (log.p) {
diff_rate / pgamma(q, shape = params$shape, rate = params$rate,
lower.tail = lower.tail)
} else {
diff_rate
}
if (!lower.tail) res$rate <- -res$rate
}
if ("shape" %in% names(vars)) {
# Analytic gradient contains Meijer G-function => compute numeric
# derivative
res$shape <- gradient(
func = function(shape) {
sum(pgamma(
q, shape = shape, rate = params$rate,
lower.tail = lower.tail, log.p = log.p
))
},
x = params$shape
)
}
res
},
tf_logdensity = function() function(x, args) { # nolint: brace.
shape <- args[["shape"]]
rate <- args[["rate"]]
ok <- x > 0
x_safe <- tf$where(ok, x, 1.0)
tf$where(
ok,
shape * log(rate) - tf$math$lgamma(shape) + (shape - 1.0) * log(x_safe) - rate * x_safe,
K$neg_inf
)
},
tf_logprobability = function() function(qmin, qmax, args) { # nolint: brace.
shape <- args[["shape"]]
rate <- args[["rate"]]
qmin0 <- qmin <= 0.0
qmax0 <- qmax <= 0.0
qmax_inf <- !tf$math$is_finite(qmax) & qmax > 0.0
qmin_safe <- tf$maximum(K$zero, qmin)
qmax_safe <- tf$maximum(K$zero, tf$where(qmax_inf, K$zero, qmax))
qmax_nok <- tf$where(qmax0, K$neg_inf, K$zero)
tf$where(
qmin0,
tf$where(
qmax0 | qmax_inf,
qmax_nok,
log(tf$math$igamma(shape, qmax_safe * rate))
),
tf$where(
qmax_inf,
log(1.0 - tf$math$igamma(shape, qmin_safe * rate)),
log(tf$math$igamma(shape, qmax_safe * rate) - tf$math$igamma(shape, qmin_safe * rate))
)
)
}
)
#' @export
fit_dist_start.GammaDistribution <- function(dist, obs, ...) {
obs <- as_trunc_obs(obs)
x <- .get_init_x(obs, .min = 0.0)
res <- dist$get_placeholders()
ph <- names(res)
mom <- weighted_moments(x, obs$w, n = 2L)
if ("shape" %in% ph && "rate" %in% ph) {
res$shape <- mom[1L]^2.0 / mom[2L]
res$rate <- mom[1L] / mom[2L]
} else if ("shape" %in% ph) {
res$shape <- dist$get_params()$rate * mom[1L]
} else { # > "rate" %in% ph
res$rate <- dist$get_params()$shape / mom[1L]
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.