Nothing
context("pandas")
test_that("Simple Pandas data frames can be roundtripped", {
skip_if_no_pandas()
pd <- import("pandas")
before <- iris
after <- py_to_r(r_to_py(before))
mapply(function(lhs, rhs) {
expect_equal(lhs, rhs)
}, before, after)
})
test_that("Ordered factors are preserved", {
skip_if_no_pandas()
pd <- import("pandas")
set.seed(123)
before <- data.frame(x = ordered(letters, levels = sample(letters)))
after <- py_to_r(r_to_py(before))
expect_equal(before, after, check.attributes = FALSE)
})
test_that("Generic methods for pandas objects produce correct results", {
skip_if_no_pandas()
df <- data.frame(x = c(1, 3), y = c(4, 4), z = c(5, 5))
pdf <- r_to_py(df)
expect_equal(length(pdf), length(df))
expect_equal(length(pdf$x), length(df$x))
expect_equal(dim(pdf), dim(df))
expect_equal(dim(pdf$x), dim(df$x))
expect_equal(dim(summary(pdf)), c(8, 3))
expect_equal(length(summary(pdf$x)), 8)
})
test_that("Timestamped arrays in Pandas DataFrames can be roundtripped", {
skip_if_no_pandas()
# TODO: this test fails on Windows because the int32 array gets
# converted to an R numeric vector rather than an integer vector
skip_on_os("windows")
pd <- import("pandas", convert = FALSE)
np <- import("numpy", convert = FALSE)
data <- list(
'A' = 1.,
'B' = pd$Timestamp('20130102'),
'C' = pd$Series(1:4, dtype = 'float32'),
'D' = np$array(rep(3L, 4), dtype = 'int32'),
'E' = pd$Categorical(c("test", "train", "test", "train")),
'F' = 'foo'
)
before <- pd$DataFrame(data)
converted <- py_to_r(before)
after <- r_to_py(converted)
expect_equal(py_to_r(before$to_csv()), py_to_r(after$to_csv()))
})
test_that("data.frames with length-one factor columns can be converted", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
np <- import("numpy", convert = FALSE)
before <- data.frame(x = "hello")
converted <- r_to_py(before)
after <- py_to_r(converted)
expect_equal(before, after, check.attributes = FALSE)
})
test_that("py_to_r preserves a Series index as names", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
np <- import("numpy", convert = FALSE)
index <- c("a", "b", "c", "d", "e")
values <- rnorm(5)
s <- pd$Series(values, index = as.list(index))
s$name <- "hi"
r <- py_to_r(s)
expect_equal(as.numeric(r), values)
expect_identical(names(r), index)
})
test_that("complex names are handled", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
d <- dict(col1 = list(1,2))
d[tuple("col1", "col2")] <- list(4, 5)
p <- pd$DataFrame(data = d)
r <- py_to_r(p)
expect_equal(names(r)[1], "col1")
# pandas 2.2 removed index.format(), and users must pass custom formatters now,
# we default to using __str__ for formatting, which given a tuple, falls back
# to __repr__ (which prints strings with quotes).
expect_in(names(r)[2], c("(col1, col2)", "('col1', 'col2')"))
})
test_that("single-row data.frames with rownames can be converted", {
skip_if_no_pandas()
before <- data.frame(A = 1, row.names = "ID01")
after <- py_to_r(r_to_py(before))
expect_equal(c(before), c(after))
})
test_that("Time zones are respected if available", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
before <- pd$DataFrame(list('TZ' = pd$Series(
c(
pd$Timestamp('20130102003020', tz = 'US/Pacific'),
pd$Timestamp('20130102003020', tz = 'CET'),
pd$Timestamp('20130102003020', tz = 'UTC'),
pd$Timestamp('20130102003020', tz = 'Hongkong')
)
)))
converted <- py_to_r(before)
after <- r_to_py(converted)
expect_true(py_to_r(before$equals(after)))
# !! this expect_equal() silently succeeds if py_to_r()
# returns a df containing python objects.
expect_equal(py_to_r(before), py_to_r(after))
expect_type(unlist(py_to_r(before)), "double") # py_ref / env would fail to simplify
expect_type(unlist(py_to_r(after)), "double") # py_ref / env would fail to simplify
attr(converted, "pandas.index") <- NULL
expect_identical(converted, structure(
list(TZ = list(
as.POSIXct(format = "%Y%m%d%H%M%OS", '20130102003020', tz = 'US/Pacific'),
as.POSIXct(format = "%Y%m%d%H%M%OS", '20130102003020', tz = 'CET'),
as.POSIXct(format = "%Y%m%d%H%M%OS", '20130102003020', tz = 'UTC'),
as.POSIXct(format = "%Y%m%d%H%M%OS", '20130102003020', tz = 'Hongkong')
)),
row.names = c(NA, -4L),
class = "data.frame"
))
})
test_that("NaT is converted to NA", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
np <- import("numpy")
before <- pd$DataFrame(pd$Series(
c(
pd$Timestamp(NULL),
pd$Timestamp(np$nan)
)
))
converted <- py_to_r(before)
after <- r_to_py(converted)
expect_equal(py_to_r(before), py_to_r(after))
})
test_that("pandas NAs are converted to R NAs", {
skip_if_no_pandas()
code <- "
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [10, 20, pd.NA]})
"
locals <- py_run_string(code, local = TRUE, convert = TRUE)
df <- locals$df
expect_true(is.na(df$b[[3]]))
pd <- import("pandas", convert = FALSE)
pdNA <- py_to_r(py_get_attr(pd, "NA"))
expect_true(is.na(pdNA))
})
test_that("categorical NAs are handled", {
skip_if_no_pandas()
df <- data.frame(x = factor("a", NA))
pdf <- r_to_py(df)
rdf <- py_to_r(pdf)
attr(rdf, "pandas.index") <- NULL
expect_equal(df, rdf)
})
test_that("ordered categoricals are handled correctly, #1234", {
skip_if_no_pandas()
p_df <- py_run_string(
'import pandas as pd
# Create Dataframe with Unordered & Ordered Factors
df = pd.DataFrame({"FCT": pd.Categorical(["No", "Yes"]),
"ORD": pd.Categorical(["No", "Yes"], ordered=True)})
', local = TRUE)$df
r_df <- data.frame("FCT" = factor(c("No", "Yes")),
"ORD" = factor(c("No", "Yes"), ordered = TRUE))
attr(p_df, "pandas.index") <- NULL
expect_identical(p_df, r_df)
})
test_that("can cast from pandas nullable types", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
data <- list(
list(name = "Int8", type = pd$Int8Dtype(), data = list(NULL, 1L, 2L)),
list(name = "Int16", type = pd$Int16Dtype(), data = list(NULL, 1L, 2L)),
list(name = "Int32", type = pd$Int32Dtype(), data = list(NULL, 1L, 2L)),
list(name = "Int64", type = pd$Int64Dtype(), data = list(NULL, 1L, 2L)),
list(name = "UInt8", type = pd$UInt8Dtype(), data = list(NULL, 1L, 2L)),
list(name = "UInt16", type = pd$UInt16Dtype(), data = list(NULL, 1L, 2L)),
list(name = "UInt32", type = pd$UInt32Dtype(), data = list(NULL, 1L, 2L)),
list(name = "UInt64", type = pd$UInt64Dtype(), data = list(NULL, 1L, 2L)),
list(name = "boolean", type = pd$BooleanDtype(), data = list(NULL, TRUE, FALSE)),
list(name = "string", type = pd$StringDtype(), data = list(NULL, "a", "b"))
)
# Float32 was added sometime after v1.1.5
if (reticulate::py_has_attr(pd, "Float32Dtype")) {
data <- append(
data,
list(
list(name = "Float32", type = pd$Float32Dtype(), data = list(NULL, 0.5, 0.3)),
list(name = "Float64", type = pd$Float64Dtype(), data = list(NULL, 0.5, 0.3))
)
)
}
for (el in data) {
p_df <- pd$DataFrame(list("x" = pd$Series(el$data, dtype = el$type)))
expect_equal(py_to_r(p_df$x$dtype$name), el$name)
r_df <- py_to_r(p_df)
expect_equal(
r_df$x,
unlist(lapply(el$data, function(x) if (is.null(x)) NA else x))
)
}
})
test_that("NA in string columns don't prevent simplification", {
skip_if_no_pandas()
pd <- import("pandas", convert = FALSE)
np <- import("numpy", convert = FALSE)
x <- pd$Series(list("a", pd$`NA`, NULL, np$nan))
expect_equal(py_to_r(x$dtype$name), "object")
r <- py_to_r(x)
expect_equal(typeof(r), "character")
expect_equal(as.logical(is.na(r)), c(FALSE, TRUE, TRUE, TRUE))
})
test_that("NA's are preserved in pandas columns", {
skip_if_no_pandas()
pd <- import("pandas")
if (numeric_version(pd$`__version__`) < "1.5") {
skip("Nullable data types require pandas version >= 1.5 to work fully.")
}
df <- data.frame(
int = c(NA, 1:10),
num = c(NA, rnorm(10)),
bool = c(NA, rep(c(TRUE, FALSE), 5)),
string = c(NA, letters[1:10])
)
withr::with_options(c(reticulate.pandas_use_nullable_dtypes = TRUE), {
p_df <- r_to_py(df)
})
r_df <- py_to_r(p_df)
expect_identical(r_df$num, df$num)
expect_identical(r_df$int, df$int)
expect_identical(r_df$bool, df$bool)
expect_identical(r_df$string, df$string)
})
test_that("Round strip for string columns with NA's work correctly", {
skip_if_no_pandas()
df <- data.frame(string = c(NA, letters[1:10]))
p <- r_to_py(df)
expect_true(py_to_r(p$string$isna()[0]))
r <- py_to_r(p)
expect_true(is.na(r$string[1]))
})
if(getRversion() < "4")
list2DF <- function (x = list(), nrow = 0L)
{
stopifnot(is.list(x), is.null(nrow) || nrow >= 0L)
if (n <- length(x)) {
if (length(nrow <- unique(lengths(x))) > 1L)
stop("all variables should have the same length")
}
else {
if (is.null(nrow))
nrow <- 0L
}
if (is.null(names(x)))
names(x) <- character(n)
class(x) <- "data.frame"
attr(x, "row.names") <- .set_row_names(nrow)
x
}
test_that("pandas simplification behavior", {
skip_if_no_pandas()
# https://github.com/rstudio/reticulate/issues/1534
py_run_string("
import pandas
df = pandas.DataFrame({'col1':[True]})
df_none = pandas.DataFrame({'col1':[True, None]})
")
expect_equal_df <- function(x, y, ...) {
attr(x, "pandas.index") <- NULL
attr(y, "pandas.index") <- NULL
expect_equal(x, y, ...)
}
expect_equal_df(py$df, list2DF(list(col1 = TRUE)))
expect_equal_df(py$df_none, list2DF(list(col1 = list(TRUE, NULL))))
py_run_string("df_none['col1'] = df_none['col1'].astype('boolean')")
expect_equal_df(py$df_none, list2DF(list(col1 = c(TRUE, NA))))
simplify_nullable_logical_columns <- function(df) {
df[] <- lapply(df, function(col) {
if (is.list(col)) {
# bail early if we can't simplify
for (el in col)
switch(typeof(el),
"NULL" = next,
"logical" = if (length(el) != 1) return(col),
return(col))
col <- vapply(col, function(x) if(is.null(x)) NA else x, TRUE,
USE.NAMES = FALSE)
}
col
})
df
}
py_run_string("
import pandas
df = pandas.DataFrame({
'col1': [True, None, False, None],
'col2': [True, False, 1, None],
})")
expect_equal_df(py$df, list2DF(list(col1 = list(TRUE, NULL, FALSE, NULL),
col2 = list(TRUE, FALSE, 1L, NULL))))
expect_equal_df(
simplify_nullable_logical_columns(py$df),
list2DF(list(col1 = c(TRUE, NA, FALSE, NA),
col2 = list(TRUE, FALSE, 1L, NULL))))
})
test_that("Additional S3 methods don't break pandas conversion", {
# anndata exports a py_to_r.pandas.core.indexes.base.Index method
# https://github.com/rstudio/reticulate/issues/1591
df <- data.frame(row.names = c("s1", "s2"),
group = c("a", "b"))
registerS3method("py_to_r", "pandas.core.indexes.base.Index",
function(x) stop("Method should not be called here"))
on.exit({
rm(list = "py_to_r.pandas.core.indexes.base.Index",
envir = environment(py_to_r)$.__S3MethodsTable__.)
})
expect_no_error({
df2 <- py_to_r(r_to_py(df))
})
attr(df2, "pandas.index") <- NULL
expect_identical(df, df2)
})
test_that("pandas from records convert successfully", {
pd <- import("pandas")
df <- pd$DataFrame$from_records(list(list(n = 1L),
list(n = 2L)))
attr(df, "pandas.index") <- NULL
expect_equal(df, data.frame(n = 1:2))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.